IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60155-z.html
   My bibliography  Save this article

An engineered U7 small nuclear RNA scaffold greatly increases ADAR-mediated programmable RNA base editing

Author

Listed:
  • Susan M. Byrne

    (Shape Therapeutics)

  • Stephen M. Burleigh

    (Shape Therapeutics)

  • Robert Fragoza

    (Shape Therapeutics)

  • Yue Jiang

    (Shape Therapeutics)

  • Yiannis Savva

    (Shape Therapeutics)

  • Ricky Pabon

    (Shape Therapeutics)

  • Evan Kania

    (Shape Therapeutics)

  • Joseph Rainaldi

    (University of California San Diego)

  • Andrew Portell

    (University of California San Diego)

  • Prashant Mali

    (University of California San Diego)

  • Adrian W. Briggs

    (Shape Therapeutics)

Abstract

Custom RNA base editing exploiting the human Adenosine Deaminase Acting on RNA (ADAR) enzyme may enable therapeutic gene editing without DNA damage or use of foreign proteins. ADAR’s adenosine-to-inosine (effectively A-to-G) deamination activity can be targeted to transcripts using an antisense guide RNA (gRNA), but efficacy is challenged by limits of in vivo delivery. Embedding gRNAs into a U7 small nuclear RNA (snRNA) framework greatly enhances RNA editing with endogenous ADAR, and a 750-plex single-cell mutagenesis screen further improved the framework. An optimized scaffold with a stronger synthetic U7 promoter enables 76% RNA editing in vitro from a single DNA construct per cell, and 75% editing in a Hurler syndrome mouse brain after one systemic AAV injection, surpassing circular gRNA approaches. The technology also improves published DMD exon-skipping designs 25-fold in differentiated myoblasts. Our engineered U7 framework represents a universal scaffold for ADAR-based RNA editing and other antisense RNA therapies.

Suggested Citation

  • Susan M. Byrne & Stephen M. Burleigh & Robert Fragoza & Yue Jiang & Yiannis Savva & Ricky Pabon & Evan Kania & Joseph Rainaldi & Andrew Portell & Prashant Mali & Adrian W. Briggs, 2025. "An engineered U7 small nuclear RNA scaffold greatly increases ADAR-mediated programmable RNA base editing," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60155-z
    DOI: 10.1038/s41467-025-60155-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60155-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60155-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. SeHee Park & Erin E. Doherty & Yixuan Xie & Anil K. Padyana & Fang Fang & Yue Zhang & Agya Karki & Carlito B. Lebrilla & Justin B. Siegel & Peter A. Beal, 2020. "High-throughput mutagenesis reveals unique structural features of human ADAR1," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Xin Liu & Tao Sun & Anna Shcherbina & Qin Li & Inga Jarmoskaite & Kalli Kappel & Gokul Ramaswami & Rhiju Das & Anshul Kundaje & Jin Billy Li, 2021. "Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Meng How Tan & Qin Li & Raghuvaran Shanmugam & Robert Piskol & Jennefer Kohler & Amy N. Young & Kaiwen Ivy Liu & Rui Zhang & Gokul Ramaswami & Kentaro Ariyoshi & Ankita Gupte & Liam P. Keegan & Cyril , 2017. "Dynamic landscape and regulation of RNA editing in mammals," Nature, Nature, vol. 550(7675), pages 249-254, October.
    4. Julie M. Eggington & Tom Greene & Brenda L. Bass, 2011. "Predicting sites of ADAR editing in double-stranded RNA," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    5. Sourav K. Bose & Brandon M. White & Meghana V. Kashyap & Apeksha Dave & Felix R. De Bie & Haiying Li & Kshitiz Singh & Pallavi Menon & Tiankun Wang & Shiva Teerdhala & Vishal Swaminathan & Heather A. , 2021. "In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karthika Devi Kiran Kumar & Shubhangi Singh & Stella Maria Schmelzle & Paul Vogel & Carolin Fruhner & Alfred Hanswillemenke & Adrian Brun & Jacqueline Wettengel & Yvonne Füll & Lukas Funk & Valentin M, 2024. "An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Madhu Biyani & Yasuhiro Isogai & Kirti Sharma & Shoei Maeda & Hinako Akashi & Yui Sugai & Masataka Nakano & Noriyuki Kodera & Manish Biyani & Miki Nakajima, 2025. "High-speed atomic force microscopy and 3D modeling reveal the structural dynamics of ADAR1 complexes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Marlon S. Zambrano-Mila & Monika Witzenberger & Zohar Rosenwasser & Anna Uzonyi & Ronit Nir & Shay Ben-Aroya & Erez Y. Levanon & Schraga Schwartz, 2023. "Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Orshay Gabay & Yoav Shoshan & Eli Kopel & Udi Ben-Zvi & Tomer D. Mann & Noam Bressler & Roni Cohen‐Fultheim & Amos A. Schaffer & Shalom Hillel Roth & Ziv Tzur & Erez Y. Levanon & Eli Eisenberg, 2022. "Landscape of adenosine-to-inosine RNA recoding across human tissues," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Amir Dailamy & Weiqi Lyu & Sami Nourreddine & Michael Tong & Joseph Rainaldi & Daniella McDonald & Rebecca Panwala & Alysson Muotri & Michael S. Breen & Kun Zhang & Prashant Mali, 2024. "Charting and probing the activity of ADARs in human development and cell-fate specification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Martin Rodriguez & Brady Trevisan & Ritu M. Ramamurthy & Sunil K. George & Jonathan Diaz & Jordan Alexander & Diane Meares & Denise J. Schwahn & David R. Quilici & Jorge Figueroa & Michael Gautreaux &, 2023. "Transplanting FVIII/ET3-secreting cells in fetal sheep increases FVIII levels long-term without inducing immunity or toxicity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Jianheng Liu & Tao Huang & Wanying Chen & Chenhui Ding & Tianxuan Zhao & Xueni Zhao & Bing Cai & Yusen Zhang & Song Li & Ling Zhang & Maoguang Xue & Xiuju He & Wanzhong Ge & Canquan Zhou & Yanwen Xu &, 2022. "Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Suba Rajendren & Xiang Ye & William Dunker & Antiana Richardson & John Karijolich, 2023. "The cellular and KSHV A-to-I RNA editome in primary effusion lymphoma and its role in the viral lifecycle," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Allegra Mboukou & Vinod Rajendra & Serafina Messmer & Therese C. Mandl & Marjorie Catala & Carine Tisné & Michael F. Jantsch & Pierre Barraud, 2024. "Dimerization of ADAR1 modulates site-specificity of RNA editing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Yiyi Ma & Eric B. Dammer & Daniel Felsky & Duc M. Duong & Hans-Ulrich Klein & Charles C. White & Maotian Zhou & Benjamin A. Logsdon & Cristin McCabe & Jishu Xu & Minghui Wang & Thomas S. Wingo & James, 2021. "Atlas of RNA editing events affecting protein expression in aged and Alzheimer’s disease human brain tissue," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Caroline B. Albertin & Sofia Medina-Ruiz & Therese Mitros & Hannah Schmidbaur & Gustavo Sanchez & Z. Yan Wang & Jane Grimwood & Joshua J. C. Rosenthal & Clifton W. Ragsdale & Oleg Simakov & Daniel S. , 2022. "Genome and transcriptome mechanisms driving cephalopod evolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Hugo C. Medina-Munoz & Eric Kofman & Pratibha Jagannatha & Evan A. Boyle & Tao Yu & Krysten L. Jones & Jasmine R. Mueller & Grace D. Lykins & Andrew T. Doudna & Samuel S. Park & Steven M. Blue & Brodi, 2024. "Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60155-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.