Author
Listed:
- Subha Biswas
(Indian Institute of Science)
- Mainak Mondal
(Indian Institute of Science)
- Gokul Chandrasekharan
(Indian Institute of Science)
- Kavya S. Mony
(Indian Institute of Science)
- Akshay Singh
(Indian Institute of Science)
- Anoop Thomas
(Indian Institute of Science)
Abstract
The strong coupling of a molecular electronic transition with a quantized radiation field can result in modified photophysics compared to its uncoupled counterparts. Often, such changes are attributed to kinetic factors, overlooking the possible modifications to intermolecular interactions. The spin-cast films of chlorin e6 trimethyl ester (Ce6T) show an excitonic coupling band in absorption resulting from their ground-state intermolecular interactions and subsequent excimer-like emission upon photoexcitation. Interestingly, the electronic strong coupling (ESC) of the Ce6T Soret and Q-band suppresses the intermolecular excitonic interactions that otherwise exist in the Ce6T thin films and brings back the monomer-like emission characteristics. Our experiment provides a unique tool to tune the molecular assembly without involving chemical modifications. Our results suggest that ESC can induce modification to the intermolecular interaction forces that hold together the molecular assemblies in the ground state, which is a significant step toward understanding the fundamentals of polaritonic chemistry in detail.
Suggested Citation
Subha Biswas & Mainak Mondal & Gokul Chandrasekharan & Kavya S. Mony & Akshay Singh & Anoop Thomas, 2025.
"Electronic strong coupling modifies the ground-state intermolecular interactions in self-assembled chlorin molecules,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60025-8
DOI: 10.1038/s41467-025-60025-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60025-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.