IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60020-z.html
   My bibliography  Save this article

Kramers nodal lines in intercalated TaS2 superconductors

Author

Listed:
  • Yichen Zhang

    (Rice University)

  • Yuxiang Gao

    (Rice University)

  • Aki Pulkkinen

    (University of West Bohemia)

  • Xingyao Guo

    (Hong Kong University of Science and Technology, Clear Water Bay)

  • Jianwei Huang

    (Rice University)

  • Yucheng Guo

    (Rice University)

  • Ziqin Yue

    (Rice University
    Smalley-Curl Institute, Rice University)

  • Ji Seop Oh

    (Rice University
    University of California, Berkeley)

  • Alex Moon

    (Tallahassee
    Florida State University)

  • Mohamed Oudah

    (University of British Columbia, Vancouver)

  • Xue-Jian Gao

    (Hong Kong University of Science and Technology, Clear Water Bay)

  • Alberto Marmodoro

    (University of West Bohemia)

  • Alexei Fedorov

    (Lawrence Berkeley National Laboratory, Berkeley)

  • Sung-Kwan Mo

    (Lawrence Berkeley National Laboratory, Berkeley)

  • Makoto Hashimoto

    (SLAC National Accelerator Laboratory)

  • Donghui Lu

    (SLAC National Accelerator Laboratory)

  • Anil Rajapitamahuni

    (Brookhaven National Lab)

  • Elio Vescovo

    (Brookhaven National Lab)

  • Junichiro Kono

    (Rice University
    Rice University
    Rice University
    Rice University)

  • Alannah M. Hallas

    (University of British Columbia, Vancouver
    University of British Columbia, Vancouver
    Toronto)

  • Robert J. Birgeneau

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory, Berkeley)

  • Luis Balicas

    (Tallahassee
    Florida State University)

  • Ján Minár

    (University of West Bohemia)

  • Pavan Hosur

    (University of Houston)

  • Kam Tuen Law

    (Hong Kong University of Science and Technology, Clear Water Bay)

  • Emilia Morosan

    (Rice University
    Rice University
    Rice University)

  • Ming Yi

    (Rice University
    Rice University
    Rice University)

Abstract

Kramers degeneracy is one fundamental embodiment of the quantum mechanical nature of particles with half-integer spin under time reversal symmetry. Under the chiral and noncentrosymmetric achiral crystalline symmetries, Kramers degeneracy emerges respectively as topological quasiparticles of Weyl fermions and Kramers nodal lines (KNLs), anchoring the Berry phase-related physics of electrons. However, an experimental demonstration for ideal KNLs well isolated at the Fermi level is lacking. Here, we establish a class of noncentrosymmetric achiral intercalated transition metal dichalcogenide superconductors with large Ising-type spin-orbit coupling, represented by InxTaS2, to host an ideal KNL phase. We provide evidence from angle-resolved photoemission spectroscopy with spin resolution, angle-dependent quantum oscillation measurements, and ab-initio calculations. Our work not only provides a realistic platform for realizing and tuning KNLs in layered materials, but also paves the way for exploring the interplay between KNLs and superconductivity, as well as applications pertaining to spintronics, valleytronics, and nonlinear transport.

Suggested Citation

  • Yichen Zhang & Yuxiang Gao & Aki Pulkkinen & Xingyao Guo & Jianwei Huang & Yucheng Guo & Ziqin Yue & Ji Seop Oh & Alex Moon & Mohamed Oudah & Xue-Jian Gao & Alberto Marmodoro & Alexei Fedorov & Sung-K, 2025. "Kramers nodal lines in intercalated TaS2 superconductors," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60020-z
    DOI: 10.1038/s41467-025-60020-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60020-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60020-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Efrén Navarro-Moratalla & Joshua O. Island & Samuel Mañas-Valero & Elena Pinilla-Cienfuegos & Andres Castellanos-Gomez & Jorge Quereda & Gabino Rubio-Bollinger & Luca Chirolli & Jose Angel Silva-Guill, 2016. "Enhanced superconductivity in atomically thin TaS2," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    2. M. G. Vergniory & L. Elcoro & Claudia Felser & Nicolas Regnault & B. Andrei Bernevig & Zhijun Wang, 2019. "A complete catalogue of high-quality topological materials," Nature, Nature, vol. 566(7745), pages 480-485, February.
    3. Barry Bradlyn & L. Elcoro & Jennifer Cano & M. G. Vergniory & Zhijun Wang & C. Felser & M. I. Aroyo & B. Andrei Bernevig, 2017. "Topological quantum chemistry," Nature, Nature, vol. 547(7663), pages 298-305, July.
    4. Shuvam Sarkar & Joydipto Bhattacharya & Pampa Sadhukhan & Davide Curcio & Rajeev Dutt & Vipin Kumar Singh & Marco Bianchi & Arnab Pariari & Shubhankar Roy & Prabhat Mandal & Tanmoy Das & Philip Hofman, 2023. "Charge density wave induced nodal lines in LaTe3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Marc A. Wilde & Matthias Dodenhöft & Arthur Niedermayr & Andreas Bauer & Moritz M. Hirschmann & Kirill Alpin & Andreas P. Schnyder & Christian Pfleiderer, 2021. "Symmetry-enforced topological nodal planes at the Fermi surface of a chiral magnet," Nature, Nature, vol. 594(7863), pages 374-379, June.
    6. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Ying-Ming Xie & Xue-Jian Gao & Xiao Yan Xu & Cheng-Ping Zhang & Jin-Xin Hu & Jason Z. Gao & K. T. Law, 2021. "Kramers nodal line metals," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grigorii Skorupskii & Fabio Orlandi & Iñigo Robredo & Milena Jovanovic & Rinsuke Yamada & Fatmagül Katmer & Maia G. Vergniory & Pascal Manuel & Max Hirschberger & Leslie M. Schoop, 2024. "Designing giant Hall response in layered topological semimetals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Chunyu Guo & A. Alexandradinata & Carsten Putzke & Amelia Estry & Teng Tu & Nitesh Kumar & Feng-Ren Fan & Shengnan Zhang & Quansheng Wu & Oleg V. Yazyev & Kent R. Shirer & Maja D. Bachmann & Hailin Pe, 2021. "Temperature dependence of quantum oscillations from non-parabolic dispersions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Tian Le & Ruihan Zhang & Changcun Li & Ruiyang Jiang & Haohao Sheng & Linfeng Tu & Xuewei Cao & Zhaozheng Lyu & Jie Shen & Guangtong Liu & Fucai Liu & Zhijun Wang & Li Lu & Fanming Qu, 2024. "Magnetic field filtering of the boundary supercurrent in unconventional metal NiTe2-based Josephson junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Frank Schindler & Stepan S. Tsirkin & Titus Neupert & B. Andrei Bernevig & Benjamin J. Wieder, 2022. "Topological zero-dimensional defect and flux states in three-dimensional insulators," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Jiabin Yu & Rui-Xing Zhang & Zhi-Da Song, 2021. "Dynamical symmetry indicators for Floquet crystals," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Luis Elcoro & Benjamin J. Wieder & Zhida Song & Yuanfeng Xu & Barry Bradlyn & B. Andrei Bernevig, 2021. "Magnetic topological quantum chemistry," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Abdulhakim Bake & Qi Zhang & Cong Son Ho & Grace L. Causer & Weiyao Zhao & Zengji Yue & Alexander Nguyen & Golrokh Akhgar & Julie Karel & David Mitchell & Zeljko Pastuovic & Roger Lewis & Jared H. Col, 2023. "Top-down patterning of topological surface and edge states using a focused ion beam," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Zhiqiang Gao & Tian-Ran Wei & Tingting Deng & Pengfei Qiu & Wei Xu & Yuecun Wang & Lidong Chen & Xun Shi, 2022. "High-throughput screening of 2D van der Waals crystals with plastic deformability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Jinyu Liu & Yinong Zhou & Sebastian Yepez Rodriguez & Matthew A. Delmont & Robert A. Welser & Triet Ho & Nicholas Sirica & Kaleb McClure & Paolo Vilmercati & Joseph W. Ziller & Norman Mannella & Javie, 2024. "Controllable strain-driven topological phase transition and dominant surface-state transport in HfTe5," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jonah Herzog-Arbeitman & B. Andrei Bernevig & Zhi-Da Song, 2024. "Interacting topological quantum chemistry in 2D with many-body real space invariants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Geng Li & Haitao Yang & Peijie Jiang & Cong Wang & Qiuzhen Cheng & Shangjie Tian & Guangyuan Han & Chengmin Shen & Xiao Lin & Hechang Lei & Wei Ji & Ziqiang Wang & Hong-Jun Gao, 2022. "Chirality locking charge density waves in a chiral crystal," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Jingyuan Zhong & Ming Yang & Wenxuan Zhao & Kaiyi Zhai & Xuan Zhen & Lifu Zhang & Dan Mu & Yundan Liu & Zhijian Shi & Ningyan Cheng & Wei Zhou & Jianfeng Wang & Weichang Hao & Zhenpeng Hu & Jincheng Z, 2025. "Coalescence of multiple topological orders in quasi-one-dimensional bismuth halide chains," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    14. Sungjoon Park & Yoonseok Hwang & Hong Chul Choi & Bohm-Jung Yang, 2021. "Topological acoustic triple point," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Haitao Yang & Yuhan Ye & Zhen Zhao & Jiali Liu & Xin-Wei Yi & Yuhang Zhang & Hongqin Xiao & Jinan Shi & Jing-Yang You & Zihao Huang & Bingjie Wang & Jing Wang & Hui Guo & Xiao Lin & Chengmin Shen & Wu, 2024. "Superconductivity and nematic order in a new titanium-based kagome metal CsTi3Bi5 without charge density wave order," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Julian Schulz & Jiho Noh & Wladimir A. Benalcazar & Gaurav Bahl & Georg von Freymann, 2022. "Photonic quadrupole topological insulator using orbital-induced synthetic flux," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Mathias Soulier & Shamashis Sengupta & Yurii G. Pashkevich & Roxana Capu & Ryan Thompson & Jarji Khmaladze & Miguel Monteverde & Louis Dumoulin & Dominik Munzar & Christian Bernhard & Subhrangsu Sarka, 2025. "Spontaneous voltage and persistent electric current from rectification of electronic noise in cuprate/manganite heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Wojciech J. Jankowski & Joshua J. P. Thompson & Bartomeu Monserrat & Robert-Jan Slager, 2025. "Excitonic topology and quantum geometry in organic semiconductors," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Tiantian Zhang & Shuichi Murakami & Hu Miao, 2025. "Weyl phonons: the connection of topology and chirality," Nature Communications, Nature, vol. 16(1), pages 1-3, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60020-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.