IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59988-5.html
   My bibliography  Save this article

Evolution of dislocations during the rapid solidification in additive manufacturing

Author

Listed:
  • Lin Gao

    (University of Virginia
    Argonne National Laboratory)

  • Yan Chen

    (Oak Ridge National Laboratory)

  • Xuan Zhang

    (Argonne National Laboratory)

  • Sean R. Agnew

    (University of Virginia)

  • Andrew C. Chuang

    (Argonne National Laboratory)

  • Tao Sun

    (University of Virginia
    Northwestern University)

Abstract

Materials processed by fusion-based additive manufacturing (AM) typically exhibit relatively high dislocation densities, along with cellular structures and elemental segregation. This representative structural feature significantly influences material performance; however, post-mortem microstructure characterizations of AM materials cannot capture the dynamic evolution of dislocations during the manufacturing process, thereby offering limited mechanism-based guidance for further advancing AM techniques and facilitating the qualification and certification of AM products. In this study, we conduct operando high-energy synchrotron X-ray diffraction experiments on wire-laser directed energy deposition of 316 L stainless steel. Through a unique configuration, our operando synchrotron experiments semi-quantitatively probe the dislocation density in solid phases and their dynamic changes during solidification and subsequent cooling. By integrating this advanced synchrotron technique with multi-physics simulation, in-situ neutron diffraction, and multi-scale electron microscopy characterization, our mechanistic study aims to elucidate the effects of rapid cooling and subsequent thermal cycling on the dislocation generation and evolution.

Suggested Citation

  • Lin Gao & Yan Chen & Xuan Zhang & Sean R. Agnew & Andrew C. Chuang & Tao Sun, 2025. "Evolution of dislocations during the rapid solidification in additive manufacturing," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59988-5
    DOI: 10.1038/s41467-025-59988-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59988-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59988-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Plotkowski & K. Saleeby & C. M. Fancher & J. Haley & G. Madireddy & K. An & R. Kannan & T. Feldhausen & Y. Lee & D. Yu & C. Leach & J. Vaughan & S. S. Babu, 2023. "Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Neng Ren & Jun Li & Ruiyao Zhang & Chinnapat Panwisawas & Mingxu Xia & Hongbiao Dong & Jianguo Li, 2023. "Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Shubo Gao & Zhi Li & Steven Petegem & Junyu Ge & Sneha Goel & Joseph Vimal Vas & Vladimir Luzin & Zhiheng Hu & Hang Li Seet & Dario Ferreira Sanchez & Helena Swygenhoven & Huajian Gao & Matteo Seita, 2023. "Additive manufacturing of alloys with programmable microstructure and properties," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Qu & Liqiang Wang & Shengbiao Zhang & Chenfeng Yang & Hou Yi Chia & Gengbo Wu & Zongxin Hu & Junhao Ding & Wentao Yan & Yang Zhang & Chi Hou Chan & Wen Chen & Yang Lu & Xu Song, 2025. "Oxide-dispersion-enabled laser additive manufacturing of high-resolution copper," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Bojing Guo & Dingcong Cui & Qingfeng Wu & Yuemin Ma & Daixiu Wei & Kumara L. S. R & Yashan Zhang & Chenbo Xu & Zhijun Wang & Junjie Li & Xin Lin & Jincheng Wang & Xun-li Wang & Feng He, 2025. "Segregation-dislocation self-organized structures ductilize a work-hardened medium entropy alloy," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59988-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.