Author
Abstract
Bacterial vaginosis (BV) is the most prevalent vaginal condition among reproductive-age women presenting with vaginal complaints. Despite its significant impact on women’s health, limited knowledge exists regarding the microbial community composition and metabolic interactions associated with BV. In this study, we analyze metagenomic data obtained from human vaginal swabs to generate in silico predictions of BV-associated bacterial metabolic interactions via genome-scale metabolic network reconstructions (GENREs). While most efforts to characterize symptomatic BV (and thus guide therapeutic intervention by identifying responders and non-responders to treatment) are based on genomic profiling, our in silico simulations reveal functional metabolic relatedness between species as quite distinct from genetic relatedness. We grow several of the most common co-occurring bacteria (Prevotella amnii, Prevotella buccalis, Hoylesella timonensis, Lactobacillus iners, Fannyhessea vaginae, and Aerrococcus christenssii) on the spent media of Gardnerella species and perform metabolomics to identify potential mechanisms of metabolic interaction. Through these analyses, we identify BV-associated bacteria that produce caffeate, a compound implicated in estrogen receptor binding, when grown in the spent media of other BV-associated bacteria. These findings underscore the complex and diverse nature of BV-associated bacterial community structures and several of these mechanisms are of potential significance in understanding host-microbiome relationships.
Suggested Citation
Lillian R. Dillard & Emma M. Glass & Glynis L. Kolling & Krystal Thomas-White & Fiorella Wever & Robert Markowitz & David Lyttle & Jason A. Papin, 2025.
"Genome-scale metabolic network reconstruction analysis identifies bacterial vaginosis-associated metabolic interactions,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59965-y
DOI: 10.1038/s41467-025-59965-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59965-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.