IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59952-3.html
   My bibliography  Save this article

Inverse design of metal-organic frameworks using deep dreaming approaches

Author

Listed:
  • Conor Cleeton

    (University of Manchester)

  • Lev Sarkisov

    (University of Manchester)

Abstract

Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a “deep dreaming” methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.

Suggested Citation

  • Conor Cleeton & Lev Sarkisov, 2025. "Inverse design of metal-organic frameworks using deep dreaming approaches," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59952-3
    DOI: 10.1038/s41467-025-59952-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59952-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59952-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59952-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.