Author
Listed:
- Pir Masoom Shah
(Central South University)
- Huimin Zhu
(Central South University)
- Zhangli Lu
(Central South University)
- Kaili Wang
(Donghua University)
- Jing Tang
(University of Helsinki
University of Helsinki)
- Min Li
(Central South University
Xiangjiang Laboratory
Central South University)
Abstract
Identifying novel drugs that can interact with target proteins is a highly challenging, time-consuming, and costly task in drug discovery and development. Numerous machine learning-based models have recently been utilized to accelerate the drug discovery process. However, these existing methods are primarily uni-tasking, either designed to predict drug-target interaction (DTI) or generate new drugs. Through the lens of pharmacological research, these tasks are intrinsically interconnected and play a critical role in effective drug development. Therefore, the learning models must be utilized in such a manner to learn the structural properties of drug molecules, the conformational dynamics of proteins, and the bioactivity between drugs and targets. To this end, this paper develops a novel multitask learning framework that can predict drug-target binding affinities and simultaneously generate new target-aware drug variants, using common features for both tasks. In addition, we developed the FetterGrad algorithm to address the optimization challenges associated with multitask learning particularly those caused by gradient conflicts between distinct tasks. Comprehensive experiments on three real-world datasets demonstrate that the proposed model provides an effective mechanism for predicting drug-target binding affinities and generating novel drugs, thus greatly facilitating the drug discovery process.
Suggested Citation
Pir Masoom Shah & Huimin Zhu & Zhangli Lu & Kaili Wang & Jing Tang & Min Li, 2025.
"DeepDTAGen: a multitask deep learning framework for drug-target affinity prediction and target-aware drugs generation,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59917-6
DOI: 10.1038/s41467-025-59917-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59917-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.