IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59826-8.html
   My bibliography  Save this article

Mpox multiprotein virus-like nanoparticle vaccine induces neutralizing and protective antibodies in mice and non-human primates

Author

Listed:
  • Ahmed A. Belghith

    (National Institutes of Health)

  • Catherine A. Cotter

    (National Institutes of Health)

  • Maxinne A. Ignacio

    (National Institutes of Health)

  • Patricia L. Earl

    (National Institutes of Health)

  • Rory A. Hills

    (University of Oxford
    University of Cambridge)

  • Mark R. Howarth

    (University of Cambridge)

  • Debra S. Yee

    (National Institutes of Health)

  • Jason M. Brenchley

    (National Institutes of Health)

  • Bernard Moss

    (National Institutes of Health)

Abstract

The upsurge of mpox in Africa and the recent global outbreak have stimulated the development of new vaccines and therapeutics. We describe the construction of virus-like particle (VLP) vaccines in which modified M1, A35 and B6 proteins from monkeypox virus (MPXV) clade Ia are conjugated individually or together to a scaffold that accommodates up to 60 ligands using the SpyTag/SpyCatcher nanoparticle system. Immunisation of female mice with VLPs induces higher anti-MPXV and anti-vaccinia virus (VACV) neutralizing antibodies than their soluble protein (SP) counterparts or modified VACV Ankara (MVA). Vaccination with individual single protein VLPs provides partial protection against lethal respiratory infections with VACV or MPXV clade IIa, whereas combinations or a chimeric VLP with all three antigens provide complete protection that is superior to SPs. Additionally, the VLP vaccine reduces the replication and spread of the virus at intranasal and intrarectal sites of inoculation. VLPs induce higher neutralizing activity than the Jynneos vaccine in rhesus macaques, and the VLP-induced antiserum provides better protection against MPXV and VACV than the Jynneos-induced antiserum when passively transferred to female mice. These data demonstrate that an mpox VLP vaccine derived from three MPXV clade Ia proteins protects against clade IIa MPXV and VACV, indicating cross-reactivity for orthopoxviruses.

Suggested Citation

  • Ahmed A. Belghith & Catherine A. Cotter & Maxinne A. Ignacio & Patricia L. Earl & Rory A. Hills & Mark R. Howarth & Debra S. Yee & Jason M. Brenchley & Bernard Moss, 2025. "Mpox multiprotein virus-like nanoparticle vaccine induces neutralizing and protective antibodies in mice and non-human primates," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59826-8
    DOI: 10.1038/s41467-025-59826-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59826-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59826-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fujun Hou & Yuntao Zhang & Xiaohu Liu & Yanal M Murad & Jiang Xu & Zhibin Yu & Xianwu Hua & Yingying Song & Jun Ding & Hongwei Huang & Ronghua Zhao & William Jia & Xiaoming Yang, 2023. "mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Tiong Kit Tan & Pramila Rijal & Rolle Rahikainen & Anthony H. Keeble & Lisa Schimanski & Saira Hussain & Ruth Harvey & Jack W. P. Hayes & Jane C. Edwards & Rebecca K. McLean & Veronica Martini & Miria, 2021. "A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin-Feng Kang & Cong Sun & Jing Sun & Chu Xie & Zhen Zhuang & Hui-Qin Xu & Zheng Liu & Yi-Hao Liu & Sui Peng & Run-Yu Yuan & Jin-Cun Zhao & Mu-Sheng Zeng, 2022. "Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Wanbo Tai & Chongyu Tian & Huicheng Shi & Benjie Chai & Xinyang Yu & Xinyu Zhuang & Pengyuan Dong & Min Li & Qi Yin & Shengyong Feng & Weixiao Wang & Oujia Zhang & Shibo Liang & Yang Liu & Jianying Li, 2025. "An mRNA vaccine against monkeypox virus inhibits infection by co-activation of humoral and cellular immune responses," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Susan K. Vester & Rolle Rahikainen & Irsyad N. A. Khairil Anuar & Rory A. Hills & Tiong Kit Tan & Mark Howarth, 2022. "SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Yang Yang & Shiyu Niu & Chenguang Shen & Liuqing Yang & Shuo Song & Yun Peng & Yifan Xu & Liping Guo & Liang Shen & Zhonghui Liao & Jiexiang Liu & Shengjie Zhang & Yanxin Cui & Jiayin Chen & Si Chen &, 2024. "Longitudinal viral shedding and antibody response characteristics of men with acute infection of monkeypox virus: a prospective cohort study," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Qing Ye & Dong Zhang & Rong-Rong Zhang & Qian Xu & Xing-Yao Huang & Baoying Huang & Meng-Xu Sun & Zhe Cong & Lin Zhu & Jianrong Ma & Na Li & Jingjing Zhang & Ting Chen & Jiahan Lu & Yongzhi Hou & Xian, 2024. "A penta-component mpox mRNA vaccine induces protective immunity in nonhuman primates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Qingqing Feng & Keman Cheng & Lizhuo Zhang & Dongshu Wang & Xiaoyu Gao & Jie Liang & Guangna Liu & Nana Ma & Chen Xu & Ming Tang & Liting Chen & Xinwei Wang & Xuehui Ma & Jiajia Zou & Quanwei Shi & Pe, 2024. "Rationally designed multimeric nanovaccines using icosahedral DNA origami for display of SARS-CoV-2 receptor binding domain," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. James Logue & Robert M. Johnson & Nita Patel & Bin Zhou & Sonia Maciejewski & Bryant Foreman & Haixia Zhou & Alyse D. Portnoff & Jing-Hui Tian & Asma Rehman & Marisa E. McGrath & Robert E. Haupt & Stu, 2023. "Immunogenicity and protection of a variant nanoparticle vaccine that confers broad neutralization against SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59826-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.