IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59800-4.html
   My bibliography  Save this article

Assessing the real implications for CO2 as generation from renewables increases

Author

Listed:
  • Dhruv Suri

    (Stanford University)

  • Jacques Chalendar

    (Stanford University)

  • Inês M. L. Azevedo

    (Stanford University
    Stanford University
    Stanford University
    Stanford University)

Abstract

Wind and solar electricity generation account for 14% of total electricity generation in the United States and are expected to continue to grow in the next decade. While increased renewable penetration reduces system-wide emissions, the intermittent nature of these resources disrupts conventional thermal plant operations. Generation displacement exhibits a nonlinear relationship, as thermal units forced to operate at suboptimal levels experience efficiency penalties. Here we show that as renewable generation rises, thermal plants often operate sub-optimally, increasing emissions when forced to respond to variability. Using hourly emissions and generation data from California and Texas, we find that solar and wind energy significantly reduce expected emissions under normal operating conditions - by 92.6% in California and 91.1% in Texas. However, if renewables force plants to operate inefficiently, emissions from natural gas and coal plants could increase by 12% to 26%. These results highlight the complex interactions between renewable energy growth and thermal plant emissions, indicating that careful management of renewables integration is crucial to minimizing overall system-level CO2 emissions, especially in electricity grids with inflexible thermal capacity.

Suggested Citation

  • Dhruv Suri & Jacques Chalendar & Inês M. L. Azevedo, 2025. "Assessing the real implications for CO2 as generation from renewables increases," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59800-4
    DOI: 10.1038/s41467-025-59800-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59800-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59800-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    2. Göransson, Lisa & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2017. "Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system," Applied Energy, Elsevier, vol. 197(C), pages 230-240.
    3. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    4. Mills, Andrew D. & Levin, Todd & Wiser, Ryan & Seel, Joachim & Botterud, Audun, 2020. "Impacts of variable renewable energy on wholesale markets and generating assets in the United States: A review of expectations and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Harrison Fell & Jeremiah X. Johnson, 2021. "Regional disparities in emissions reduction and net trade from renewables," Nature Sustainability, Nature, vol. 4(4), pages 358-365, April.
    6. Shupeng Zhu & Michael Mac Kinnon & Andrea Carlos-Carlos & Steven J. Davis & Scott Samuelsen, 2022. "Decarbonization will lead to more equitable air quality in California," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. de Mars, Patrick & O’Sullivan, Aidan & Keppo, Ilkka, 2020. "Estimating the impact of variable renewable energy on base-load cycling in the GB power system," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhruv Suri & Jacques de Chalendar & Ines Azevedo, 2024. "What are the real implications for $CO_2$ as generation from renewables increases?," Papers 2408.05209, arXiv.org.
    2. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    3. Francesco Simmini & Marco Agostini & Massimiliano Coppo & Tommaso Caldognetto & Andrea Cervi & Fabio Lain & Ruggero Carli & Roberto Turri & Paolo Tenti, 2020. "Leveraging Demand Flexibility by Exploiting Prosumer Response to Price Signals in Microgrids," Energies, MDPI, vol. 13(12), pages 1-19, June.
    4. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    5. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    6. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    7. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    8. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    9. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    10. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    11. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    12. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    13. Eser, P. & Chokani, N. & Abhari, R., 2018. "Trade-offs between integration and isolation in Switzerland's energy policy," Energy, Elsevier, vol. 150(C), pages 19-27.
    14. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
    15. Goforth, Teagan & Levin, Todd & Nock, Destenie, 2025. "Incorporating energy justice and equity objectives in power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    16. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    17. Gallo, Michela & Del Borghi, Adriana & Strazza, Carlo & Parodi, Lara & Arcioni, Livia & Proietti, Stefania, 2016. "Opportunities and criticisms of voluntary emission reduction projects developed by Public Administrations: Analysis of 143 case studies implemented in Italy," Applied Energy, Elsevier, vol. 179(C), pages 1269-1282.
    18. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    19. Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2017. "Securing highly penetrated wind energy systems using linearized transmission switching mechanism," Applied Energy, Elsevier, vol. 190(C), pages 1207-1220.
    20. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59800-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.