IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59726-x.html
   My bibliography  Save this article

Seamless incorporation of artificial water channels in defect-free polyamide membrane for desalination of brackish water

Author

Listed:
  • Yingsong Liu

    (China University of Mining and Technology-Beijing)

  • Xieyang Xu

    (China University of Mining and Technology-Beijing)

  • Chenshuo Wang

    (China University of Mining and Technology-Beijing)

  • Huijun Yu

    (China University of Mining and Technology-Beijing)

  • Weiyi Wang

    (China University of Mining and Technology-Beijing)

  • Yanxi Gong

    (China University of Mining and Technology-Beijing)

  • Changwei Zhao

    (China Agricultural University)

  • Jianbing Wang

    (China University of Mining and Technology-Beijing
    China University of Mining and Technology-Beijing)

Abstract

Artificial water channels (AWCs) show the potential for overcoming the permeability-selectivity tradeoff of polyamide (PA) membranes. However, the availability of biomimetic materials and limitations posed by fabrication-induced defects make the development of AWC-PA membranes a daunting task. Herein, we synthesize imidazolylethyl-ureidoethyl-phenyl (IUP) compounds to form AWC by self-assembling and provide a strategy to seamlessly incorporate AWC in defect-free PA membranes. IUP compounds are molecularly designed with enhanced nature to form AWC due to π-π stacking interactions. In addition, nanosized colloid AWC aggregates can be obtained in water directly with the aid of sodium dodecyl sulfate (SDS) and conveniently incorporated into PA layers. The AWC not only promotes the preferential selective passage of water but also exhibits good compatibility with the surrounding PA matrix. The biomimetic membranes demonstrate a water permeance of 4.3 L·m−2·h−1·bar−1 and NaCl rejection of 99.3%, much higher than that observed with marketed state-of-the-art membranes. Mechanism understanding reveals that the compatible interaction between AWC, SDS and PA matrix is a necessary requisite to fabricate defect-free AWC-PA layers. This strategy can be easily extended to industrial scale and the biomimetic membranes may represent the development direction of the next generation of high-performance reverse osmosis membranes.

Suggested Citation

  • Yingsong Liu & Xieyang Xu & Chenshuo Wang & Huijun Yu & Weiyi Wang & Yanxi Gong & Changwei Zhao & Jianbing Wang, 2025. "Seamless incorporation of artificial water channels in defect-free polyamide membrane for desalination of brackish water," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59726-x
    DOI: 10.1038/s41467-025-59726-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59726-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59726-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xueling Wang & Qiang Lyu & Tiezheng Tong & Kuo Sun & Li-Chiang Lin & Chuyang Y. Tang & Fenglin Yang & Michael D. Guiver & Xie Quan & Yingchao Dong, 2022. "Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yue-xiao Shen & Woochul Song & D. Ryan Barden & Tingwei Ren & Chao Lang & Hasin Feroz & Codey B. Henderson & Patrick O. Saboe & Daniel Tsai & Hengjing Yan & Peter J. Butler & Guillermo C. Bazan & Will, 2018. "Publisher Correction: Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yue-xiao Shen & Woochul Song & D. Ryan Barden & Tingwei Ren & Chao Lang & Hasin Feroz & Codey B. Henderson & Patrick O. Saboe & Daniel Tsai & Hengjing Yan & Peter J. Butler & Guillermo C. Bazan & Will, 2018. "Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Wentian Zhang & Shanshan Zhao & Haiyun Li & Cunxian Lai & Shangwei Zhang & Wu Wen & Chuyang Y. Tang & Fangang Meng, 2025. "Lignin alkali regulated interfacial polymerization towards ultra-selective and highly permeable nanofiltration membrane," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Shan Dai & Charlotte Simms & Gilles Patriarche & Marco Daturi & Antoine Tissot & Tatjana N. Parac-Vogt & Christian Serre, 2024. "Highly defective ultra-small tetravalent MOF nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jiuyang Lin & Zijian Yu & Tianci Chen & Junming Huang & Lianxin Chen & Jiangjing Li & Xuewei Li & Xiaolei Huang & Jianquan Luo & Elisa Yun Mei Ang & William Toh & Peng Cheng Wang & Teng Yong Ng & Dong, 2025. "Sub-4 nanometer porous membrane enables highly efficient electrodialytic fractionation of dyes and inorganic salts," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Mengjiao Zhai & Farhad Moghadam & Tsaone Gosiamemang & Jerry Y. Y. Heng & Kang Li, 2024. "Facile orientation control of MOF-303 hollow fiber membranes by a dual-source seeding method," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Bowen Gan & Lu Elfa Peng & Wenyu Liu & Lingyue Zhang & Li Ares Wang & Li Long & Hao Guo & Xiaoxiao Song & Zhe Yang & Chuyang Y. Tang, 2024. "Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yingchao Dong & Camille Violet & Chunyi Sun & Xianhui Li & Yuxuan Sun & Qingbin Zheng & Chuyang Tang & Menachem Elimelech, 2025. "Ceramic-carbon Janus membrane for robust solar-thermal desalination," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59726-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.