IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59703-4.html
   My bibliography  Save this article

Meter-scale heterostructure printing for high-toughness fiber electrodes in intelligent digital apparel

Author

Listed:
  • Gun-Hee Lee

    (Seoul National University
    Pusan National University)

  • Yunheum Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Hyeonyeob Seo

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Kyunghyun Jo

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jinwook Yeo

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Semin Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jae-Young Bae

    (Seoul National University)

  • Chul Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Carmel Majidi

    (Carnegie Mellon University)

  • Jiheong Kang

    (Seoul National University, Seoul)

  • Seung-Kyun Kang

    (Seoul National University)

  • Seunghwa Ryu

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Seongjun Park

    (Seoul National University
    Seoul National University
    Seoul National University
    Seoul National University)

Abstract

Intelligent digital apparel, which integrates electronic functionalities into clothing, represents the future of healthcare and ubiquitous control in wearable devices. Realizing such apparel necessitates developing meter-scale conductive fibers with high toughness, conductivity, stable conductance under deformation, and mechanical durability. In this study, we present a heterostructure printing method capable of producing meter-scale (~50 m) biphasic conductive fibers that meet these criteria. Our approach involves encapsulating deformable liquid metal particles (LMPs) within a functionalized thermoplastic polyurethane matrix. This encapsulation induces in situ assembly of LMPs during fiber formation, creating a heterostructure that seamlessly integrates the matrix’s durability with the LMPs’ superior electrical performance. Unlike rigid conductive materials, deformable LMPs offer stretchability and toughness with a low gauge factor. Through precise twisting using an engineered annealing machine, multiple fiber strands are transformed into robust, electrically stable meter-scale electrodes. This advancement enhances their practicality in various intelligent digital apparel applications, such as stretchable displays, wearable healthcare systems, and digital controls.

Suggested Citation

  • Gun-Hee Lee & Yunheum Lee & Hyeonyeob Seo & Kyunghyun Jo & Jinwook Yeo & Semin Kim & Jae-Young Bae & Chul Kim & Carmel Majidi & Jiheong Kang & Seung-Kyun Kang & Seunghwa Ryu & Seongjun Park, 2025. "Meter-scale heterostructure printing for high-toughness fiber electrodes in intelligent digital apparel," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59703-4
    DOI: 10.1038/s41467-025-59703-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59703-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59703-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoonseob Kim & Jian Zhu & Bongjun Yeom & Matthew Di Prima & Xianli Su & Jin-Gyu Kim & Seung Jo Yoo & Ctirad Uher & Nicholas A. Kotov, 2013. "Stretchable nanoparticle conductors with self-organized conductive pathways," Nature, Nature, vol. 500(7460), pages 59-63, August.
    2. Mengxiao Chen & Zhe Wang & Qichong Zhang & Zhixun Wang & Wei Liu & Ming Chen & Lei Wei, 2021. "Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Chaoqun Dong & Andreas Leber & Tapajyoti Das Gupta & Rajasundar Chandran & Marco Volpi & Yunpeng Qu & Tung Nguyen-Dang & Nicola Bartolomei & Wei Yan & Fabien Sorin, 2020. "High-efficiency super-elastic liquid metal based triboelectric fibers and textiles," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Naoji Matsuhisa & Martin Kaltenbrunner & Tomoyuki Yokota & Hiroaki Jinno & Kazunori Kuribara & Tsuyoshi Sekitani & Takao Someya, 2015. "Printable elastic conductors with a high conductivity for electronic textile applications," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    5. Gun-Hee Lee & Ye Rim Lee & Hanul Kim & Do A Kwon & Hyeonji Kim & Congqi Yang & Siyoung Q. Choi & Seongjun Park & Jae-Woong Jeong & Steve Park, 2022. "Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Gun-Hee Lee & Do Hoon Lee & Woojin Jeon & Jihwan Yoon & Kwangguk Ahn & Kum Seok Nam & Min Kim & Jun Kyu Kim & Yong Hoe Koo & Jinmyoung Joo & WooChul Jung & Jaehong Lee & Jaewook Nam & Seongjun Park & , 2023. "Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Wonkyeong Son & Sungwoo Chun & Jae Myeong Lee & Yourack Lee & Jeongmin Park & Dongseok Suh & Duck Weon Lee & Hachul Jung & Young-Jin Kim & Younghoon Kim & Soon Moon Jeong & Sang Kyoo Lim & Changsoon C, 2019. "Highly twisted supercoils for superelastic multi-functional fibres," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. Pedro Alhais Lopes & Bruno C. Santos & Anibal T. Almeida & Mahmoud Tavakoli, 2021. "Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gun-Hee Lee & Do Hoon Lee & Woojin Jeon & Jihwan Yoon & Kwangguk Ahn & Kum Seok Nam & Min Kim & Jun Kyu Kim & Yong Hoe Koo & Jinmyoung Joo & WooChul Jung & Jaehong Lee & Jaewook Nam & Seongjun Park & , 2023. "Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Nan Li & Yingxin Zhou & Yuqing Li & Chunwei Li & Wentao Xiang & Xueqing Chen & Pan Zhang & Qi Zhang & Jun Su & Bohao Jin & Huize Song & Cai Cheng & Minghui Guo & Lei Wang & Jing Liu, 2024. "Transformable 3D curved high-density liquid metal coils – an integrated unit for general soft actuation, sensing and communication," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Tianzhu Zhou & Yangzhe Yu & Bing He & Zhe Wang & Ting Xiong & Zhixun Wang & Yanting Liu & Jiwu Xin & Miao Qi & Haozhe Zhang & Xuhui Zhou & Liheng Gao & Qunfeng Cheng & Lei Wei, 2022. "Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Soosang Chae & Won Jin Choi & Lisa Julia Nebel & Chang Hee Cho & Quinn A. Besford & André Knapp & Pavlo Makushko & Yevhen Zabila & Oleksandr Pylypovskyi & Min Woo Jeong & Stanislav Avdoshenko & Oliver, 2024. "Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Hyeonyeob Seo & Gun-Hee Lee & Jiwoo Park & Dong-Yeong Kim & Yeonzu Son & Semin Kim & Kum Seok Nam & Congqi Yang & Joonhee Won & Jae-Young Bae & Hyunjun Kim & Seung-Kyun Kang & Steve Park & Jiheong Kan, 2025. "Self-packaged stretchable printed circuits with ligand-bound liquid metal particles in elastomer," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Osman Gul & Myoung Song & Chang-Yeon Gu & Jihyeon Ahn & Kichul Lee & Junseong Ahn & Hye Jin Kim & Taek-Soo Kim & Inkyu Park, 2025. "Bioinspired interfacial engineering for highly stretchable electronics," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Beibei Shao & Ming-Han Lu & Tai-Chen Wu & Wei-Chen Peng & Tien-Yu Ko & Yung-Chi Hsiao & Jiann-Yeu Chen & Baoquan Sun & Ruiyuan Liu & Ying-Chih Lai, 2024. "Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Sitong Li & Rui Zhang & Guanghao Zhang & Luyizheng Shuai & Wang Chang & Xiaoyu Hu & Min Zou & Xiang Zhou & Baigang An & Dong Qian & Zunfeng Liu, 2022. "Microfluidic manipulation by spiral hollow-fibre actuators," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Rongzhou Lin & Han-Joon Kim & Sippanat Achavananthadith & Ze Xiong & Jason K. W. Lee & Yong Lin Kong & John S. Ho, 2022. "Digitally-embroidered liquid metal electronic textiles for wearable wireless systems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Yuzhou Shao & Lusong Wei & Xinyue Wu & Chengmei Jiang & Yao Yao & Bo Peng & Han Chen & Jiangtao Huangfu & Yibin Ying & Chuanfang John Zhang & Jianfeng Ping, 2022. "Room-temperature high-precision printing of flexible wireless electronics based on MXene inks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Xiong Lin & Chen–Yu Li & Lu–Xuan Liang & Qing–Yun Guo & Yongzheng Zhang & Si–Rui Fu & Qin Zhang & Feng Chen & Di Han & Qiang Fu, 2024. "Organic–inorganic covalent–ionic network enabled all–in–one multifunctional coating for flexible displays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Huimin He & Hao Li & Aoyang Pu & Wenxiu Li & Kiwon Ban & Lizhi Xu, 2023. "Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Rui Xu & Gilbert Santiago Cañón Bermúdez & Oleksandr V. Pylypovskyi & Oleksii M. Volkov & Eduardo Sergio Oliveros Mata & Yevhen Zabila & Rico Illing & Pavlo Makushko & Pavel Milkin & Leonid Ionov & Jü, 2022. "Self-healable printed magnetic field sensors using alternating magnetic fields," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59703-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.