IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59681-7.html
   My bibliography  Save this article

Luminescence-enabled three-dimensional temperature bioimaging

Author

Listed:
  • Liyan Ming

    (Universidad Autónoma de Madrid
    Hospital Ramón y Cajal
    Universidad Autónoma de Madrid)

  • Anna Romelli

    (Ca’ Foscari University of Venice)

  • José Lifante

    (Universidad Autónoma de Madrid
    Hospital Ramón y Cajal)

  • Patrizia Canton

    (Ca’ Foscari University of Venice)

  • Ginés Lifante-Pedrola

    (Universidad Autónoma de Madrid)

  • Daniel Jaque

    (Universidad Autónoma de Madrid
    Hospital Ramón y Cajal
    Universidad Autónoma de Madrid)

  • Erving Ximendes

    (Universidad Autónoma de Madrid
    Hospital Ramón y Cajal)

  • Riccardo Marin

    (Universidad Autónoma de Madrid
    Universidad Autónoma de Madrid
    Ca’ Foscari University of Venice
    Universidad Autónoma de Madrid)

Abstract

Luminescence thermometry affords remote thermal readouts with high spatial resolution in a minimally invasive way. This technology has advanced our understanding of biological mechanisms and physical processes from the macro- to the submicrometric scale. Yet, current approaches only allow obtaining 2D thermal images. This aspect limits the potential of this technology, given the inherent three-dimensional nature of heat diffusion processes. Despite initial attempts, a credible method that allows extracting 3D thermal images via luminescence is missing. Here, we design such a method combining Ag2S nanothermometers and machine learning algorithms. The approach leverages the distortions in the emission spectra of luminescent nanothermometers caused by changes in temperature and tissue-induced photon extinction. The optimized neural network-based algorithm can extract this information and provide 3D thermal images of complex nanothermometer patterns. Although tested for luminescence thermometry at the in vivo level, this method has far-reaching implications for luminescence-supported 3D sensing in biological systems in general.

Suggested Citation

  • Liyan Ming & Anna Romelli & José Lifante & Patrizia Canton & Ginés Lifante-Pedrola & Daniel Jaque & Erving Ximendes & Riccardo Marin, 2025. "Luminescence-enabled three-dimensional temperature bioimaging," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59681-7
    DOI: 10.1038/s41467-025-59681-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59681-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59681-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Benevento & Alán Alpár & Anna Gundacker & Leila Afjehi & Kira Balueva & Zsofia Hevesi & János Hanics & Sabah Rehman & Daniela D. Pollak & Gert Lubec & Peer Wulff & Vincent Prevot & Tamas L. Horv, 2024. "A brainstem–hypothalamus neuronal circuit reduces feeding upon heat exposure," Nature, Nature, vol. 628(8009), pages 826-834, April.
    2. Yukai Wu & Fang Li & Yanan Wu & Hao Wang & Liangtao Gu & Jieying Zhang & Yukun Qi & Lingkai Meng & Na Kong & Yingjie Chai & Qian Hu & Zhenyu Xing & Wuwei Ren & Fuyou Li & Xingjun Zhu, 2024. "Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Xiaoxiang Gao & Xiangjun Chen & Hongjie Hu & Xinyu Wang & Wentong Yue & Jing Mu & Zhiyuan Lou & Ruiqi Zhang & Keren Shi & Xue Chen & Muyang Lin & Baiyan Qi & Sai Zhou & Chengchangfeng Lu & Yue Gu & Xi, 2022. "A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Ming Xu & Xianmei Zou & Qianqian Su & Wei Yuan & Cong Cao & Qiuhong Wang & Xingjun Zhu & Wei Feng & Fuyou Li, 2018. "Ratiometric nanothermometer in vivo based on triplet sensitized upconversion," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enhai Song & Meihua Chen & Zitao Chen & Yayun Zhou & Weijie Zhou & Hong-Tao Sun & Xianfeng Yang & Jiulin Gan & Shi Ye & Qinyuan Zhang, 2022. "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jinshu Huang & Langping Tu & Haozhang Huang & Haopeng Wei & Qinyuan Zhang & Bo Zhou, 2024. "Manipulating energy migration in nanoparticles toward tunable photochromic upconversion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Maxime Brunner & David Lopez-Rodriguez & Judith Estrada-Meza & Rafik Dali & Antoine Rohrbach & Tamara Deglise & Andrea Messina & Bernard Thorens & Federico Santoni & Fanny Langlet, 2024. "Fasting induces metabolic switches and spatial redistributions of lipid processing and neuronal interactions in tanycytes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Le Zeng & Ling Huang & Wenhai Lin & Lin-Han Jiang & Gang Han, 2023. "Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yukai Wu & Fang Li & Yanan Wu & Hao Wang & Liangtao Gu & Jieying Zhang & Yukun Qi & Lingkai Meng & Na Kong & Yingjie Chai & Qian Hu & Zhenyu Xing & Wuwei Ren & Fuyou Li & Xingjun Zhu, 2024. "Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Sujin Jeong & Hyungsoo Yoon & Lukas Felix Michalek & Geonhee Kim & Jinhyoung Kim & Jiseok Seo & Dahyun Kim & Hwaeun Park & Byeongmoon Lee & Yongtaek Hong, 2024. "Printable, stretchable metal-vapor-desorption layers for high-fidelity patterning in soft, freeform electronics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Lihong Yan & Xin Zhang & Liling Jin & Yin Li & Yang Chen & Jubiao Zhang & Zhenning Sun & Junxia Qi & Changqing Qu & Guanzhong Dong & Yongjie Zhang & Qin Jiang & An Liu & Juxue Li, 2025. "The ARCCRABP1 neurons play a crucial role in the regulation of energy homeostasis," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Chaorui Qiu & Zhiqiang Zhang & Zhiqiang Xu & Liao Qiao & Li Ning & Shujun Zhang & Min Su & Weichang Wu & Kexin Song & Zhuo Xu & Long-Qing Chen & Hairong Zheng & Chengbo Liu & Weibao Qiu & Fei Li, 2024. "Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59681-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.