Author
Listed:
- Matthew D. Mann
(Scripps Research
The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)
- Min Wang
(Baylor College of Medicine)
- Josephine C. Ferreon
(Baylor College of Medicine)
- Phoebe S. Tsoi
(Baylor College of Medicine)
- Michael P. Suess
(Baylor College of Medicine)
- Antrix Jain
(Baylor College of Medicine)
- Anna Malovannaya
(Baylor College of Medicine)
- Roberto Vera Alvarez
(Omics Informatics LLC)
- Bruce D. Pascal
(Omics Informatics LLC)
- Raj Kumar
(Touro University)
- Dean P. Edwards
(Baylor College of Medicine)
- Patrick R. Griffin
(Scripps Research
The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)
Abstract
The progesterone receptor (PR) is a steroid-responsive nuclear receptor with two isoforms: PR-A and PR-B. Disruption of PR-A:PR-B signaling is associated with breast cancer through interactions with oncogenic co-regulatory proteins (CoRs). However, molecular details of isoform-specific PR-CoR interactions remain poorly understood. Using structural mass spectrometry, we investigate the sequential binding mechanism of purified full-length PR and intact CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes on target DNA. Our findings reveal selective CoR NR-box binding by PR and unique interaction surfaces between PR and CoRs during complex assembly, providing a structural basis for CoR sequential binding on PR. Antagonist-bound PR showed persistent CoR interactions, challenging the classical model of nuclear receptor activation and repression. In this work, we offer a peptide-level perspective on the organization of the PR transcriptional complex and infer the mechanisms behind the interactions of these proteins, both in active and inactive conformations.
Suggested Citation
Matthew D. Mann & Min Wang & Josephine C. Ferreon & Phoebe S. Tsoi & Michael P. Suess & Antrix Jain & Anna Malovannaya & Roberto Vera Alvarez & Bruce D. Pascal & Raj Kumar & Dean P. Edwards & Patrick , 2025.
"Structural proteomics defines a sequential priming mechanism for the progesterone receptor,"
Nature Communications, Nature, vol. 16(1), pages 1-20, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59458-y
DOI: 10.1038/s41467-025-59458-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59458-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.