IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59413-x.html
   My bibliography  Save this article

Flow physics of nutrient transport drives functional design of ciliates

Author

Listed:
  • Jingyi Liu

    (University of Southern California)

  • John H. Costello

    (Providence College
    Marine Biological Laboratories)

  • Eva Kanso

    (University of Southern California
    University of Southern California)

Abstract

Phagotrophy, the ability of cells to ingest organic particles, marked a pivotal milestone in evolution, enabling the emergence of single-celled eukaryotes that consume other organisms and leading to multicellular life. However, reliance on food particles also created a mechanical challenge—how to coordinate the transfer of particles from the exterior environment to the cell interior? Here, we investigate this important link using mechanistic models of ciliates, a clade of single-celled eukaryotes that either swim or attach and generate feeding currents to capture prey. We demonstrate that ciliates optimize their feeding efficiency by designating a specific portion of the cell surface as a ‘mouth,’ and optimal cilia coverage varies by life strategy: for sessile ciliates, prey encounter is most efficient when cilia are arranged in bands around oral structures while ciliates that swim display diverse ciliary arrangements that meet the cell’s nutritional needs. Importantly, beyond a threshold of doubling nutrient uptake, further increases in feeding flux do not seem to be a dominant selective force in cell design.

Suggested Citation

  • Jingyi Liu & John H. Costello & Eva Kanso, 2025. "Flow physics of nutrient transport drives functional design of ciliates," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59413-x
    DOI: 10.1038/s41467-025-59413-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59413-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59413-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59413-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.