Author
Listed:
- Ming Zhang
(China Agricultural University
Henan University
Henan University)
- Xueyan Zhou
(China Agricultural University)
- Limin Wang
(China Agricultural University)
- Xiaoyan Liang
(China Agricultural University)
- Xin Liu
(Qingdao Agricultural University)
- Caifu Jiang
(China Agricultural University
China Agricultural University
Frontiers Science Center for Molecular Design Breeding)
Abstract
The exclusion of sodium ions (Na+) from the shoot tissue, termed shoot Na+ exclusion, underlies a core mechanism of crop salt tolerance. Recent studies have shown that the HAK (High-Affinity K+ Transporter) family Na+ transporters play a key role in shoot Na+ exclusion of various crops, however, it is unknown whether and how this type of transporter is post-transcriptionally regulated. Here, we show that two closely related SnRK2 kinases, designated as ZmSnRK2.9 and ZmSnRK2.10, promote shoot Na+ exclusion and salt tolerance by activating the Na+ transporter ZmHAK4 in maize. Under salt conditions, the kinase activity of ZmSnRK2.9 and ZmSnRK2.10 is activated, then they interact with and phosphorylate ZmHAK4 at Ser5, increasing the Na+ transport activity of ZmHAK4, which in turn promotes salt tolerance by improving the exclusion of Na+ from the shoot tissue. Furthermore, we show that a 20-bp deletion that occurred naturally in the ZmSnRK2.10 promoter decreases its transcript level, resulting in an increased shoot Na+ content under salt conditions. Our findings support a breeding program that can utilize the favorable alleles of ZmHAK4 and ZmSnRK2.10 to enhance both the transcriptional and post-transcriptional activation of ZmHAK4, thus advancing the development of salt-tolerant maize.
Suggested Citation
Ming Zhang & Xueyan Zhou & Limin Wang & Xiaoyan Liang & Xin Liu & Caifu Jiang, 2025.
"A SnRK2-HAK regulatory module confers natural variation of salt tolerance in maize,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59332-x
DOI: 10.1038/s41467-025-59332-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59332-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.