IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59278-0.html
   My bibliography  Save this article

Injectable extracellular vesicle hydrogels with tunable viscoelasticity for depot vaccine

Author

Listed:
  • Rimsha Bhatta

    (University of Illinois at Urbana-Champaign)

  • Joonsu Han

    (University of Illinois at Urbana-Champaign)

  • Yusheng Liu

    (University of Illinois at Urbana-Champaign)

  • Yang Bo

    (University of Illinois at Urbana-Champaign)

  • Yueji Wang

    (University of Illinois at Urbana-Champaign)

  • Daniel Nguyen

    (University of Illinois at Urbana-Champaign)

  • Qian Chen

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Hua Wang

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    Cancer Center at Illinois (CCIL))

Abstract

Extracellular vesicles (EVs) have been actively explored for therapeutic applications in the context of cancer and other diseases. However, the poor tissue retention of EVs has limited the development of EV-based therapies. Here we report a facile approach to fabricating injectable EV hydrogels with tunable viscoelasticity and gelation temperature, by metabolically tagging EVs with azido groups and further crosslinking them with dibenzocyclooctyne-bearing polyethylene glycol via efficient click chemistry. One such EV gel has a gelation temperature of 39.4 °C, enabling in situ gelation of solution-form EVs upon injection into the body. The in situ formed gels are stable for over 4 weeks and can attract immune cells including dendritic cells over time in vivo. We further show that tumor EV hydrogels, upon subcutaneous injection, can serve as a long-term depot for EV-encased tumor antigens, providing an extended time for the modulation of dendritic cells and subsequent priming of tumor-specific CD8+ T cells. The tumor EV hydrogel also shows synergy with anti-PD-1 checkpoint blockade for tumor treatment, and is able to reprogram the tumor microenvironment. As a proof-of-concept, we also demonstrate that EV hydrogels can induce enhanced antibody responses than solution-form EVs over an extended time. Our study yields a facile and universal approach to fabricating injectable EV hydrogels with tunable mechanics and improving the therapeutic efficacy of EV-based therapies.

Suggested Citation

  • Rimsha Bhatta & Joonsu Han & Yusheng Liu & Yang Bo & Yueji Wang & Daniel Nguyen & Qian Chen & Hua Wang, 2025. "Injectable extracellular vesicle hydrogels with tunable viscoelasticity for depot vaccine," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59278-0
    DOI: 10.1038/s41467-025-59278-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59278-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59278-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rimsha Bhatta & Joonsu Han & Yusheng Liu & Yang Bo & David Lee & Jiadiao Zhou & Yueji Wang & Erik Russell Nelson & Qian Chen & Xiaojia Shelly Zhang & Wael Hassaneen & Hua Wang, 2023. "Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Joonsu Han & Rimsha Bhatta & Yusheng Liu & Yang Bo & Alberto Elosegui-Artola & Hua Wang, 2023. "Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Jiang & Min Zhao & Jia Miao & Wan Chen & Yuan Zhang & Minqian Miao & Li Yang & Qing Li & Qingqing Miao, 2024. "Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59278-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.