Author
Listed:
- Erika M. Petro-Turnquist
(University of Nebraska-Lincoln
University of Nebraska-Lincoln)
- Adthakorn Madapong
(University of Nebraska-Lincoln)
- Matthew Pekarek
(University of Nebraska-Lincoln
University of Nebraska-Lincoln)
- David Steffen
(Nebraska Veterinary Diagnostic Center)
- Eric A. Weaver
(University of Nebraska-Lincoln
University of Nebraska-Lincoln)
Abstract
Swine Influenza A Virus (IAV-S) poses a significant burden to both the pork industry and public health. Current vaccines against IAV-S are infrequently updated and induce strain-specific immunity. Computational platforms have recently emerged as a promising strategy to develop new-age vaccines. Here, we describe the Epigraph, a computationally derived and epitope optimized set of vaccine immunogens. When compared to wildtype immunogens (WT) and a commercial comparator (FluSure XP®), pigs immunized with Epigraph demonstrate significantly improved breadth and magnitude of antibody responses. Further, pigs immunized with Epigraph show more robust and a wider breadth of cross-reactive cell-mediated immune responses than pigs immunized with WT immunogens. In an experimental infection model, Epigraph immunized pigs demonstrate a significant reduction of clinical disease, lower shedding of infectious virus, reduction of lung lesions, and lower microscopic immunopathology compared to the other immunization groups. These data support the continued investigation of computationally designed and epitope optimized vaccine immunogens against influenza A virus.
Suggested Citation
Erika M. Petro-Turnquist & Adthakorn Madapong & Matthew Pekarek & David Steffen & Eric A. Weaver, 2025.
"Epitope-optimized vaccine elicits enduring immunity against swine influenza A virus,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59182-7
DOI: 10.1038/s41467-025-59182-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59182-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.