IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59088-4.html
   My bibliography  Save this article

Structural characterization of antibody-responses following Zolgensma treatment for AAV capsid engineering to expand patient cohorts

Author

Listed:
  • Mario Mietzsch

    (University of Florida)

  • Jane Hsi

    (University of Florida)

  • Austin R. Nelson

    (University of Florida)

  • Neeta Khandekar

    (The University of Sydney and Sydney Children’s Hospitals Network)

  • Ann-Maree Huang

    (The University of Sydney and Sydney Children’s Hospitals Network)

  • Nicholas JC Smith

    (Women’s and Children’s Hospital
    Women’s and Children’s Health Network)

  • Jon Zachary

    (University of Florida)

  • Lindsay Potts

    (University of Florida)

  • Michelle A. Farrar

    (UNSW Medicine
    Sydney Children’s Hospital)

  • Paul Chipman

    (University of Florida)

  • Mohammad Ghanem

    (University of Helsinki)

  • Ian E. Alexander

    (The University of Sydney and Sydney Children’s Hospitals Network
    University of Sydney)

  • Grant J. Logan

    (The University of Sydney and Sydney Children’s Hospitals Network)

  • Juha T. Huiskonen

    (University of Helsinki)

  • Robert McKenna

    (University of Florida)

Abstract

Monoclonal antibodies are useful tools to dissect the neutralizing antibody response against the adeno-associated virus (AAV) capsids that are used as gene therapy delivery vectors. The presence of pre-existing neutralizing antibodies in large portions of the human population poses a significant challenge for AAV-mediated gene therapy, primarily targeting the capsid leading to vector inactivation and loss of treatment efficacy. This study structurally characterizes the interactions of 21 human-derived neutralizing antibodies from three patients treated with the AAV9 vector, Zolgensma®, utilizing high-resolution cryo-electron microscopy. The antibodies bound to the 2-fold depression or the 3-fold protrusions do not conform to the icosahedral symmetry of the capsid, thus requiring localized reconstructions. These complex structures provide unprecedented details of the mAbs binding interfaces, with many antibodies inducing structural perturbations of the capsid upon binding. Key surface capsid amino acid residues were identified facilitating the design of capsid variants with antibody escape phenotypes. These AAV9 capsid variants have the potential to expand the patient cohort to include those that were previously excluded due to their pre-existing neutralizing antibodies against the wtAAV9 capsid, and the possibly of further treatment to those requiring redosing.

Suggested Citation

  • Mario Mietzsch & Jane Hsi & Austin R. Nelson & Neeta Khandekar & Ann-Maree Huang & Nicholas JC Smith & Jon Zachary & Lindsay Potts & Michelle A. Farrar & Paul Chipman & Mohammad Ghanem & Ian E. Alexan, 2025. "Structural characterization of antibody-responses following Zolgensma treatment for AAV capsid engineering to expand patient cohorts," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59088-4
    DOI: 10.1038/s41467-025-59088-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59088-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59088-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Serban L. Ilca & Abhay Kotecha & Xiaoyu Sun & Minna M. Poranen & David I. Stuart & Juha T. Huiskonen, 2015. "Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Nan Zhang & Jennifer Paynter & Aleksandar Antanasijevic & Joel D. Allen & Mor Eldad & Yi-Zong Lee & Jeffrey Copps & Maddy L. Newby & Linling He & Deborah Chavez & Pat Frost & Anna Goodroe & John Du, 2023. "Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates," Nature Communications, Nature, vol. 14(1), pages 1-29, December.
    2. Fenglin Li & Chun-Feng David Hou & Ravi K. Lokareddy & Ruoyu Yang & Francesca Forti & Federica Briani & Gino Cingolani, 2023. "High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Guosong Wang & Zhenghui Zha & Pengfei Huang & Hui Sun & Yang Huang & Maozhou He & Tian Chen & Lina Lin & Zhenqin Chen & Zhibo Kong & Yuqiong Que & Tingting Li & Ying Gu & Hai Yu & Jun Zhang & Qingbing, 2022. "Structures of pseudorabies virus capsids," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Charles Bayly-Jones & Christopher J. Lupton & Claudia Fritz & Hariprasad Venugopal & Daniel Ramsbeck & Michael Wermann & Christian Jäger & Alex Marco & Stephan Schilling & Dagmar Schlenzig & James C. , 2022. "Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Zhihai Li & Jingjing Pang & Rongchao Gao & Qingxia Wang & Maoyan Zhang & Xuekui Yu, 2023. "Cryo-electron microscopy structures of capsids and in situ portals of DNA-devoid capsids of human cytomegalovirus," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Nejc Kejzar & Elina Laanto & Ilona Rissanen & Vahid Abrishami & Muniyandi Selvaraj & Sylvain Moineau & Janne Ravantti & Lotta-Riina Sundberg & Juha T. Huiskonen, 2022. "Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59088-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.