IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59079-5.html
   My bibliography  Save this article

Atomically precise Ni clusters inducing active NiN2 sites with uniform-large vacancies towards efficient CO2-to-CO conversion

Author

Listed:
  • Guangyuan Xu

    (University of Science and Technology of China)

  • Xingjie Peng

    (University of Chinese Academy of Sciences)

  • Chuanqiang Wu

    (Anhui University)

  • Shibo Xi

    (A*STAR)

  • Huixin Xiang

    (Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE))

  • Lei Feng

    (University of Science and Technology of China)

  • Zhendong Liu

    (University of Science and Technology of China)

  • Yi Duan

    (University of Science and Technology of China)

  • Lijin Gan

    (University of Science and Technology of China)

  • Si Chen

    (University of Science and Technology of China)

  • Yuan Kong

    (University of Science and Technology of China)

  • Yanzhe Ma

    (University of Science and Technology of China)

  • Fujing Nie

    (University of Science and Technology of China)

  • Jie Zhao

    (University of Science and Technology of China)

  • Xiao Hai

    (Peking University)

  • Wei Wei

    (Chinese Academy of Sciences)

  • Meng Zhou

    (University of Science and Technology of China)

  • Tianfu Wang

    (Shanghai Jiao Tong University)

  • Chuanhao Yao

    (Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE))

  • Wu Zhou

    (University of Chinese Academy of Sciences)

  • Huan Yan

    (University of Science and Technology of China)

Abstract

CO2 electroreduction to CO promises to give an efficient strategy for CO2 fixation and transformation. However, current reported active sites fail to deliver sufficient activity with high CO Faradic efficiency (FEco) over a wide range of potential. Here, we show a general synthetic protocol to fabricate a batch of highly pure and active NiN2 catalysts with precise engineering of the uniform-large (UL) vacancy around the active sites, which is accomplished through the ‘pre-deposition + pyrolysis’ of various atomically precise Ni clusters (Nin) and in-situ etching of the support by the ‘nano bomb’ (sulfur-ligand in the clusters). The NiN2 sites with UL vacancies could achieve a high turnover frequency (TOF) of 350000 h−1 with ~100% FEco in a wide potential range of 1500 mV. In-situ infrared spectra and theoretical calculations reveal that a highly pure NiN2 site with UL vacancy contributes to this remarkable catalytic performance compared to the counterparts. This general synthetic strategy enables us to simultaneously engineer active sites and surrounding vacancies with the employment of atomically precise metal clusters, thereby enhancing catalytic performance for other specific reactions.

Suggested Citation

  • Guangyuan Xu & Xingjie Peng & Chuanqiang Wu & Shibo Xi & Huixin Xiang & Lei Feng & Zhendong Liu & Yi Duan & Lijin Gan & Si Chen & Yuan Kong & Yanzhe Ma & Fujing Nie & Jie Zhao & Xiao Hai & Wei Wei & M, 2025. "Atomically precise Ni clusters inducing active NiN2 sites with uniform-large vacancies towards efficient CO2-to-CO conversion," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59079-5
    DOI: 10.1038/s41467-025-59079-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59079-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59079-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingwei Li & Meng Zhou & Yongbo Song & Tatsuya Higaki & He Wang & Rongchao Jin, 2021. "Double-helical assembly of heterodimeric nanoclusters into supercrystals," Nature, Nature, vol. 594(7863), pages 380-384, June.
    2. Hong Bin Yang & Sung-Fu Hung & Song Liu & Kaidi Yuan & Shu Miao & Liping Zhang & Xiang Huang & Hsin-Yi Wang & Weizheng Cai & Rong Chen & Jiajian Gao & Xiaofeng Yang & Wei Chen & Yanqiang Huang & Hao M, 2018. "Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction," Nature Energy, Nature, vol. 3(2), pages 140-147, February.
    3. Junsic Cho & Taejung Lim & Haesol Kim & Ling Meng & Jinjong Kim & Seunghoon Lee & Jong Hoon Lee & Gwan Yeong Jung & Kug-Seung Lee & Francesc Viñes & Francesc Illas & Kai S. Exner & Sang Hoon Joo & Cha, 2023. "Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Shengjie Wei & Yibing Sun & Yun-Ze Qiu & Ang Li & Ching-Yu Chiang & Hai Xiao & Jieshu Qian & Yadong Li, 2023. "Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Chuanhao Yao & Na Guo & Shibo Xi & Cong-Qiao Xu & Wei Liu & Xiaoxu Zhao & Jing Li & Hanyan Fang & Jie Su & Zhongxin Chen & Huan Yan & Zhizhan Qiu & Pin Lyu & Cheng Chen & Haomin Xu & Xinnan Peng & Xin, 2020. "Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Liuzhuang Xing & Qian Yang & Chen Zhu & Yilian Bai & Yurong Tang & Magnus Rueping & Yunfei Cai, 2023. "Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Jiqing Jiao & Qing Yuan & Meijie Tan & Xiaoqian Han & Mingbin Gao & Chao Zhang & Xuan Yang & Zhaolin Shi & Yanbin Ma & Hai Xiao & Jiangwei Zhang & Tongbu Lu, 2023. "Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Qiyou Wang & Tao Luo & Xueying Cao & Yujie Gong & Yuxiang Liu & Yusen Xiao & Hongmei Li & Franz Gröbmeyer & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Kang Liu & Junwei Fu & Shiguo Zhang & Changxu Liu &, 2025. "Lanthanide single-atom catalysts for efficient CO2-to-CO electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhibo Yao & Hao Cheng & Yifei Xu & Xinyu Zhan & Song Hong & Xinyi Tan & Tai-Sing Wu & Pei Xiong & Yun-Liang Soo & Molly Meng-Jung Li & Leiduan Hao & Liang Xu & Alex W. Robertson & Bingjun Xu & Ming Ya, 2024. "Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Yongbo Song & Yingwei Li & Meng Zhou & Hao Li & Tingting Xu & Chuanjun Zhou & Feng Ke & Dayujia Huo & Yan Wan & Jialong Jie & Wen Wu Xu & Manzhou Zhu & Rongchao Jin, 2022. "Atomic structure of a seed-sized gold nanoprism," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    13. Zheye Zhang & Hongyan Zhao & Shibo Xi & Xiaoxu Zhao & Xiao Chi & Hong Yang & Zhongxin Chen & Xiaojiang Yu & Yang-Gang Wang & Bin Liu & Peng Chen, 2025. "Breaking linear scaling relationships in oxygen evolution via dynamic structural regulation of active sites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Zhan-Hua Zhao & Bao-Liang Han & Hai-Feng Su & Qi-Lin Guo & Wen-Xin Wang & Jing-Qiu Zhuo & Yong-Nan Guo & Jia-Long Liu & Geng-Geng Luo & Ping Cui & Di Sun, 2024. "Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Shengjie Wei & Wenjie Ma & Minmin Sun & Pan Xiang & Ziqi Tian & Lanqun Mao & Lizeng Gao & Yadong Li, 2024. "Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xin Lin & Shize Geng & Xianglong Du & Feiteng Wang & Xu Zhang & Fang Xiao & Zhengyi Xiao & Yucheng Wang & Jun Cheng & Zhifeng Zheng & Xiaoqing Huang & Lingzheng Bu, 2025. "Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Lin Li & Ying Lv & Hongting Sheng & Yonglei Du & Haifeng Li & Yapei Yun & Ziyi Zhang & Haizhu Yu & Manzhou Zhu, 2023. "A low-nuclear Ag4 nanocluster as a customized catalyst for the cyclization of propargylamine with CO2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59079-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.