IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59002-y.html
   My bibliography  Save this article

Selective identification of epigenetic regulators at methylated genomic sites by SelectID

Author

Listed:
  • Wenchang Qian

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Penglei Jiang

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Mingming Niu

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Tianjin Institutes of Health Science)

  • Yujuan Fu

    (Zhejiang University School of Medicine)

  • Deyu Huang

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Dong Zhang

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Tianjin Institutes of Health Science)

  • Ying Liang

    (Zhejiang University School of Medicine)

  • Qiwei Wang

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Yingli Han

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Xin Zeng

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Yixin Shi

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Lingli Jiang

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Zebin Yu

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Jinxin Li

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Huan Lu

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Hong Wang

    (Chinese Academy of Medical Sciences & Peking Union Medical College
    Tianjin Institutes of Health Science)

  • Baohui Chen

    (Zhejiang University School of Medicine)

  • Pengxu Qian

    (State Key Laboratory of Experimental Hematology
    1369 West Wenyi Road
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

Abstract

DNA methylation is a significant component in proximal chromatin regulation and plays crucial roles in regulating gene expression and maintaining the repressive state of retrotransposon elements. However, accurate profiling of the proteomics which simultaneously identifies specific DNA sequences and their associated epigenetic modifications remains a challenge. Here, we report a strategy termed SelectID (selective profiling of epigenetic control at genome targets identified by dCas9), which introduces methylated DNA binding domain into dCas9-mediated proximity labeling system to enable in situ protein capture at repetitive elements with 5-methylcytosine (5mC) modifications. SelectID is demonstrated as feasible as dCas9-TurboID system at specific DNA methylation regions, such as the chromosome 9 satellite. Using SelectID, we successfully identify CHD4 as potential repressors of methylated long interspersed nuclear element-1 (LINE-1) retrotransposon through direct binding at the 5’ untranslated region (5’UTR) of young LINE-1 elements. Overall, our SelectID approach has opened up avenues for uncovering potential regulators of specific DNA regions with DNA methylation, which will greatly facilitate future studies on epigenetic regulation.

Suggested Citation

  • Wenchang Qian & Penglei Jiang & Mingming Niu & Yujuan Fu & Deyu Huang & Dong Zhang & Ying Liang & Qiwei Wang & Yingli Han & Xin Zeng & Yixin Shi & Lingli Jiang & Zebin Yu & Jinxin Li & Huan Lu & Hong , 2025. "Selective identification of epigenetic regulators at methylated genomic sites by SelectID," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59002-y
    DOI: 10.1038/s41467-025-59002-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59002-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59002-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher D. Go & James D. R. Knight & Archita Rajasekharan & Bhavisha Rathod & Geoffrey G. Hesketh & Kento T. Abe & Ji-Young Youn & Payman Samavarchi-Tehrani & Hui Zhang & Lucie Y. Zhu & Evelyn Pop, 2021. "A proximity-dependent biotinylation map of a human cell," Nature, Nature, vol. 595(7865), pages 120-124, July.
    2. Tetsuya Takano & John T. Wallace & Katherine T. Baldwin & Alicia M. Purkey & Akiyoshi Uezu & Jamie L. Courtland & Erik J. Soderblom & Tomomi Shimogori & Patricia F. Maness & Cagla Eroglu & Scott H. So, 2020. "Chemico-genetic discovery of astrocytic control of inhibition in vivo," Nature, Nature, vol. 588(7837), pages 296-302, December.
    3. Alika K. Maunakea & Raman P. Nagarajan & Mikhail Bilenky & Tracy J. Ballinger & Cletus D’Souza & Shaun D. Fouse & Brett E. Johnson & Chibo Hong & Cydney Nielsen & Yongjun Zhao & Gustavo Turecki & Alle, 2010. "Conserved role of intragenic DNA methylation in regulating alternative promoters," Nature, Nature, vol. 466(7303), pages 253-257, July.
    4. Baohui Chen & Wei Zou & Haiyue Xu & Ying Liang & Bo Huang, 2018. "Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhu & Kerem Can Akkaya & Julia Ruta & Nanako Yokoyama & Cong Wang & Max Ruwolt & Diogo Borges Lima & Martin Lehmann & Fan Liu, 2024. "Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Matvei Khoroshkin & Andrey Buyan & Martin Dodel & Albertas Navickas & Johnny Yu & Fathima Trejo & Anthony Doty & Rithvik Baratam & Shaopu Zhou & Sean B. Lee & Tanvi Joshi & Kristle Garcia & Benedict C, 2024. "Systematic identification of post-transcriptional regulatory modules," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Julian Petersen & Lukas Englmaier & Artem V. Artemov & Irina Poverennaya & Ruba Mahmoud & Thibault Bouderlique & Marketa Tesarova & Ruslan Deviatiiarov & Anett Szilvásy-Szabó & Evgeny E. Akkuratov & D, 2023. "A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Donghua Hu & Min Tan & Dongliang Lu & Brian Kleiboeker & Xuejing Liu & Hongsuk Park & Alexxai V. Kravitz & Kooresh I. Shoghi & Yu-Hua Tseng & Babak Razani & Akihiro Ikeda & Irfan J. Lodhi, 2023. "TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and energy homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Sruti Rayaprolu & Sara Bitarafan & Juliet V. Santiago & Ranjita Betarbet & Sydney Sunna & Lihong Cheng & Hailian Xiao & Ruth S. Nelson & Prateek Kumar & Pritha Bagchi & Duc M. Duong & Annie M. Goettem, 2022. "Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Joanne Watson & Harriet R. Ferguson & Rosie M. Brady & Jennifer Ferguson & Paul Fullwood & Hanyi Mo & Katherine H. Bexley & David Knight & Gareth Howell & Jean-Marc Schwartz & Michael P. Smith & Chiar, 2022. "Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    10. Negin Khosraviani & V. Talya Yerlici & Jonathan St-Germain & Yi Yang Hou & Shi Bo Cao & Carla Ghali & Michael Bokros & Rehna Krishnan & Razqallah Hakem & Stephen Lee & Brian Raught & Karim Mekhail, 2024. "Nucleolar Pol II interactome reveals TBPL1, PAF1, and Pol I at intergenic rDNA drive rRNA biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Kohdai Yamada & Ryouhei Shioya & Kohei Nishino & Hirotake Furihata & Atsushi Hijikata & Mika K. Kaneko & Yukinari Kato & Tsuyoshi Shirai & Hidetaka Kosako & Tatsuya Sawasaki, 2023. "Proximity extracellular protein-protein interaction analysis of EGFR using AirID-conjugated fragment of antigen binding," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Ken-ichi Dewa & Nariko Arimura & Wataru Kakegawa & Masayuki Itoh & Toma Adachi & Satoshi Miyashita & Yukiko U. Inoue & Kento Hizawa & Kei Hori & Natsumi Honjoya & Haruya Yagishita & Shinichiro Taya & , 2024. "Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Ella Doron-Mandel & Benjamin J. Bokor & Yanzhe Ma & Lena A. Street & Lauren C. Tang & Ahmed A. Abdou & Neel H. Shah & George Rosenberger & Marko Jovanovic, 2025. "SEC-MX: an approach to systematically study the interplay between protein assembly states and phosphorylation," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    14. Rahul Kumar & Maleeha Khan & Vincent Francis & Adriana Aguila & Gopinath Kulasekaran & Emily Banks & Peter S. McPherson, 2024. "DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Kento Ojima & Wataru Kakegawa & Tokiwa Yamasaki & Yuta Miura & Masayuki Itoh & Yukiko Michibata & Ryou Kubota & Tomohiro Doura & Eriko Miura & Hiroshi Nonaka & Seiya Mizuno & Satoru Takahashi & Michis, 2022. "Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Ayenachew Bezawork-Geleta & Camille J. Devereux & Stacey N. Keenan & Jieqiong Lou & Ellie Cho & Shuai Nie & David P. Souza & Vinod K. Narayana & Nicole A. Siddall & Carlos H. M. Rodrigues & Stephanie , 2025. "Proximity proteomics reveals a mechanism of fatty acid transfer at lipid droplet-mitochondria- endoplasmic reticulum contact sites," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    18. David Martino & Nina Kresoje & Nelly Amenyogbe & Rym Ben-Othman & Bing Cai & Mandy Lo & Olubukola Idoko & Oludare A. Odumade & Reza Falsafi & Travis M. Blimkie & Andy An & Casey P. Shannon & Sebastian, 2024. "DNA Methylation signatures underpinning blood neutrophil to lymphocyte ratio during first week of human life," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Rahul Kumar & Prashant Swapnil & Mukesh Meena & Shweta Selpair & Bal Govind Yadav, 2022. "Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    20. Maik Müller & Fabienne Gräbnitz & Niculò Barandun & Yang Shen & Fabian Wendt & Sebastian N. Steiner & Yannik Severin & Stefan U. Vetterli & Milon Mondal & James R. Prudent & Raphael Hofmann & Marc Oos, 2021. "Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59002-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.