IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58949-2.html
   My bibliography  Save this article

Contact-free magnetic resonance imaging and spectroscopy with acoustic levitation

Author

Listed:
  • Smaragda-Maria Argyri

    (Chalmers University of Technology)

  • Leo Svenningsson

    (Chalmers University of Technology)

  • Feryal Guerroudj

    (Chalmers University of Technology)

  • Diana Bernin

    (Chalmers University of Technology)

  • Lars Evenäs

    (Chalmers University of Technology)

  • Romain Bordes

    (Chalmers University of Technology)

Abstract

Conventional magnetic resonance measurements often rely on the use of sample containers. This limits the implementation of time-resolved studies at the molecular level of liquid samples undergoing evaporation or other dynamic phenomena that require access to the liquid-gas interface. In this study, we developed a demagnetized acoustic levitator to perform magnetic resonance studies on liquid samples, in a contact-free manner. The performance of the levitator inside a 7.05 T magnetic field was examined and magnetic resonance images of the levitator and the levitated samples were acquired. Then, we collected magnetic resonance spectra of the levitated droplets by applying localized and non-localized pulse sequences and we examined the effect of the droplet shape on the chemical shift. Additionally, we conducted time-resolved experiments on pure solvents and mixtures, and captured physical and chemical molecular interactions, in real-time. This approach enables contact-free studies at the molecular level of dynamic phenomena on a microliter droplet using magnetic resonance techniques.

Suggested Citation

  • Smaragda-Maria Argyri & Leo Svenningsson & Feryal Guerroudj & Diana Bernin & Lars Evenäs & Romain Bordes, 2025. "Contact-free magnetic resonance imaging and spectroscopy with acoustic levitation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58949-2
    DOI: 10.1038/s41467-025-58949-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58949-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58949-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Asier Marzo & Sue Ann Seah & Bruce W. Drinkwater & Deepak Ranjan Sahoo & Benjamin Long & Sriram Subramanian, 2015. "Holographic acoustic elements for manipulation of levitated objects," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Stein & Sam Keller & Yujie Luo & Ognjen Ilic, 2022. "Shaping contactless radiation forces through anomalous acoustic scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Mia Kvåle Løvmo & Shiyu Deng & Simon Moser & Rainer Leitgeb & Wolfgang Drexler & Monika Ritsch-Marte, 2024. "Ultrasound-induced reorientation for multi-angle optical coherence tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Mahdi Derayatifar & Mohsen Habibi & Rama Bhat & Muthukumaran Packirisamy, 2024. "Holographic direct sound printing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Zhiyuan Zhang & Alexander Sukhov & Jens Harting & Paolo Malgaretti & Daniel Ahmed, 2022. "Rolling microswarms along acoustic virtual walls," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xueyan Chen & Qianqian Ding & Chao Bi & Jian Ruan & Shikuan Yang, 2022. "Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yucheng Luo & Qiu Yin & Keke Chen & Zhaoyu Deng & Xiaozhou Liu & Yinning Zhou & Benpeng Zhu & Wenming Zhang & Zhichao Ma, 2025. "Superselective embolic particle guidance in vessel networks via shape-adaptive acoustic manipulation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Shuai Liu & Hao Ge & Xiang-Yuan Xu & Yuan Sun & Xiao-Ping Liu & Ming-Hui Lu & Yan-Feng Chen, 2025. "Generation of spatiotemporal acoustic vortices with arbitrarily oriented orbital angular momentum," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Jakub Janiak & Yuyang Li & Yann Ferry & Alexander A. Doinikov & Daniel Ahmed, 2023. "Acoustic microbubble propulsion, train-like assembly and cargo transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58949-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.