IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58947-4.html
   My bibliography  Save this article

Beating the Ramsey limit on sensing with deterministic qubit control

Author

Listed:
  • M. O. Hecht

    (University of Southern California
    University of Southern California)

  • Kumar Saurav

    (University of Southern California
    University of Southern California)

  • Evangelos Vlachos

    (University of Southern California
    University of Southern California)

  • Daniel A. Lidar

    (University of Southern California
    University of Southern California
    University of Southern California
    University of Southern California)

  • Eli M. Levenson-Falk

    (University of Southern California
    University of Southern California
    University of Southern California)

Abstract

Qubit frequency shifts, which often contain information about a target environment variable, are detected with Ramsey interference measurements. Unfortunately, the sensitivity of this protocol is limited by decoherence. We introduce a new protocol to enhance the sensitivity of a qubit frequency measurement in the presence of decoherence by applying a continuous drive to stabilize one component of the Bloch vector. We demonstrate our protocol on a superconducting qubit, enhancing sensitivity per measurement shot by 1.65 × and sensitivity per qubit evolution time by 1.09 × compared to Ramsey. We also explore the protocol theoretically, finding unconditional enhancements compared to Ramsey interferometry and maximum enhancements of 1.96 × and 1.18 × , respectively. Additionally, our protocol is robust to parameter miscalibrations. It requires no feedback and no extra control or measurement resources, and can be immediately applied in a wide variety of quantum computing and quantum sensor technologies.

Suggested Citation

  • M. O. Hecht & Kumar Saurav & Evangelos Vlachos & Daniel A. Lidar & Eli M. Levenson-Falk, 2025. "Beating the Ramsey limit on sensing with deterministic qubit control," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58947-4
    DOI: 10.1038/s41467-025-58947-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58947-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58947-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. D. Shulman & S. P. Harvey & J. M. Nichol & S. D. Bartlett & A. C. Doherty & V. Umansky & A. Yacoby, 2014. "Suppressing qubit dephasing using real-time Hamiltonian estimation," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    2. Yink Loong Len & Tuvia Gefen & Alex Retzker & Jan Kołodyński, 2022. "Quantum metrology with imperfect measurements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Gopalakrishnan Balasubramanian & I. Y. Chan & Roman Kolesov & Mohannad Al-Hmoud & Julia Tisler & Chang Shin & Changdong Kim & Aleksander Wojcik & Philip R. Hemmer & Anke Krueger & Tobias Hanke & Alfre, 2008. "Nanoscale imaging magnetometry with diamond spins under ambient conditions," Nature, Nature, vol. 455(7213), pages 648-651, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Kai Tzeng & Feng Ke & Chunjing Jia & Yayuan Liu & Sulgiye Park & Minkyung Han & Mungo Frost & Xinxin Cai & Wendy L. Mao & Rodney C. Ewing & Yi Cui & Thomas P. Devereaux & Yu Lin & Steven Chu, 2024. "Improving the creation of SiV centers in diamond via sub-μs pulsed annealing treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Jin Qin & Xiaofei Wu & Anke Krueger & Bert Hecht, 2025. "Light-driven plasmonic microrobot for nanoparticle manipulation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. K. Herb & L. A. Völker & J. M. Abendroth & N. Meinhardt & L. Schie & P. Gambardella & C. L. Degen, 2025. "Quantum magnetometry of transient signals with a time resolution of 1.1 nanoseconds," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    5. Jongmin Lee & Roger Ding & Justin Christensen & Randy R. Rosenthal & Aaron Ison & Daniel P. Gillund & David Bossert & Kyle H. Fuerschbach & William Kindel & Patrick S. Finnegan & Joel R. Wendt & Micha, 2022. "A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Guibin Lan & Kang-Yuan Liu & Zhenyu Wang & Fan Xia & Hongjun Xu & Tengyu Guo & Yu Zhang & Bin He & Jiahui Li & Caihua Wan & Gerrit E. W. Bauer & Peng Yan & Gang-Qin Liu & Xin-Yu Pan & Xiufeng Han & Gu, 2025. "Coherent harmonic generation of magnons in spin textures," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    7. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Wonjin Jang & Jehyun Kim & Jaemin Park & Gyeonghun Kim & Min-Kyun Cho & Hyeongyu Jang & Sangwoo Sim & Byoungwoo Kang & Hwanchul Jung & Vladimir Umansky & Dohun Kim, 2023. "Wigner-molecularization-enabled dynamic nuclear polarization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Jaemin Park & Hyeongyu Jang & Hanseo Sohn & Jonginn Yun & Younguk Song & Byungwoo Kang & Lucas E. A. Stehouwer & Davide Degli Esposti & Giordano Scappucci & Dohun Kim, 2025. "Passive and active suppression of transduced noise in silicon spin qubits," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    10. Antti Vepsäläinen & Roni Winik & Amir H. Karamlou & Jochen Braumüller & Agustin Di Paolo & Youngkyu Sung & Bharath Kannan & Morten Kjaergaard & David K. Kim & Alexander J. Melville & Bethany M. Niedzi, 2022. "Improving qubit coherence using closed-loop feedback," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Carmem M. Gilardoni & Simone Eizagirre Barker & Catherine L. Curtin & Stephanie A. Fraser & Oliver. F. J. Powell & Dillon K. Lewis & Xiaoxi Deng & Andrew J. Ramsay & Sonachand Adhikari & Chi Li & Igor, 2025. "A single spin in hexagonal boron nitride for vectorial quantum magnetometry," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xinghan Guo & Mouzhe Xie & Anchita Addhya & Avery Linder & Uri Zvi & Stella Wang & Xiaofei Yu & Tanvi D. Deshmukh & Yuzi Liu & Ian N. Hammock & Zixi Li & Clayton T. DeVault & Amy Butcher & Aaron P. Es, 2024. "Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Xingyu Gao & Sumukh Vaidya & Saakshi Dikshit & Peng Ju & Kunhong Shen & Yuanbin Jin & Shixiong Zhang & Tongcang Li, 2024. "Nanotube spin defects for omnidirectional magnetic field sensing," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58947-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.