IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58933-w.html
   My bibliography  Save this article

Fluctuation-driven topological Hall effect in room-temperature itinerant helimagnet Fe3Ga4

Author

Listed:
  • Priya R. Baral

    (The University of Tokyo
    PSI Center for Neutron and Muon Sciences
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Victor Ukleev

    (PSI Center for Neutron and Muon Sciences
    Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Ivica Živković

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Youngro Lee

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Fabio Orlandi

    (Harwell Science and Innovation Campus)

  • Pascal Manuel

    (Harwell Science and Innovation Campus)

  • Yurii Skourski

    (Helmholtz-Zentrum Dresden-Rossendorf)

  • Lukas Keller

    (PSI Center for Neutron and Muon Sciences)

  • Anne Stunault

    (Institut Laue-Langevin)

  • J. Alberto Rodríguez-Velamazán

    (Institut Laue-Langevin)

  • Robert Cubitt

    (Institut Laue-Langevin)

  • Arnaud Magrez

    (École Polytechnique Fédérale de Lausanne (EPFL))

  • Jonathan S. White

    (PSI Center for Neutron and Muon Sciences)

  • Igor I. Mazin

    (George Mason University
    George Mason University)

  • Oksana Zaharko

    (PSI Center for Neutron and Muon Sciences)

Abstract

The topological Hall effect (THE) is a hallmark of a non-trivial geometric spin arrangement in a magnetic metal, originating from a finite scalar spin chirality (SSC). The associated Berry phase is often a consequence of non-coplanar magnetic structures identified by multiple k-vectors. For single - k magnetic structures however with zero SSC, the emergence of a finite topological Hall signal presents a conceptual challenge. Here, we report that a fluctuation-driven mechanism involving chiral magnons is responsible for the observed THE in a low-symmetry compound, monoclinic Fe3Ga4. Through neutron scattering experiments, we discovered several nontrivial magnetic phases in this system. In our focus is the helical spiral phase at room temperature, which transforms into a transverse conical state in applied magnetic field, supporting a significant THE signal up to and above room temperature. Our work offers a fresh perspective in the search for novel materials with intertwined topological magnetic and transport properties.

Suggested Citation

  • Priya R. Baral & Victor Ukleev & Ivica Živković & Youngro Lee & Fabio Orlandi & Pascal Manuel & Yurii Skourski & Lukas Keller & Anne Stunault & J. Alberto Rodríguez-Velamazán & Robert Cubitt & Arnaud , 2025. "Fluctuation-driven topological Hall effect in room-temperature itinerant helimagnet Fe3Ga4," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58933-w
    DOI: 10.1038/s41467-025-58933-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58933-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58933-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Max Hirschberger & Taro Nakajima & Shang Gao & Licong Peng & Akiko Kikkawa & Takashi Kurumaji & Markus Kriener & Yuichi Yamasaki & Hajime Sagayama & Hironori Nakao & Kazuki Ohishi & Kazuhisa Kakurai &, 2019. "Skyrmion phase and competing magnetic orders on a breathing kagomé lattice," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Tomoyuki Yokouchi & Fumitaka Kagawa & Max Hirschberger & Yoshichika Otani & Naoto Nagaosa & Yoshinori Tokura, 2020. "Emergent electromagnetic induction in a helical-spin magnet," Nature, Nature, vol. 586(7828), pages 232-236, October.
    4. Y. Fujishiro & N. Kanazawa & T. Nakajima & X. Z. Yu & K. Ohishi & Y. Kawamura & K. Kakurai & T. Arima & H. Mitamura & A. Miyake & K. Akiba & M. Tokunaga & A. Matsuo & K. Kindo & T. Koretsune & R. Arit, 2019. "Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Christoph Sürgers & Gerda Fischer & Patrick Winkel & Hilbert v. Löhneysen, 2014. "Large topological Hall effect in the non-collinear phase of an antiferromagnet," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yoshihiro D. Kato & Yoshihiro Okamura & Max Hirschberger & Yoshinori Tokura & Youtarou Takahashi, 2023. "Topological magneto-optical effect from skyrmion lattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. Erjian Cheng & Limin Yan & Xianbiao Shi & Rui Lou & Alexander Fedorov & Mahdi Behnami & Jian Yuan & Pengtao Yang & Bosen Wang & Jin-Guang Cheng & Yuanji Xu & Yang Xu & Wei Xia & Nikolai Pavlovskii & D, 2024. "Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Gaojie Zhang & Fei Guo & Hao Wu & Xiaokun Wen & Li Yang & Wen Jin & Wenfeng Zhang & Haixin Chang, 2022. "Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Heng Niu & Han Gyu Yoon & Hee Young Kwon & Zhiyuan Cheng & Siqi Fu & Hongying Zhu & Bingfeng Miao & Liang Sun & Yizheng Wu & Andreas K. Schmid & Kai Liu & Changyeon Won & Haifeng Ding & Gong Chen, 2025. "Magnetic skyrmionic structures with variable topological charges in engineered Dzyaloshinskii-Moriya interaction systems," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Hao Zhang & Zhentao Wang & David Dahlbom & Kipton Barros & Cristian D. Batista, 2023. "CP2 skyrmions and skyrmion crystals in realistic quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Grigorii Skorupskii & Fabio Orlandi & Iñigo Robredo & Milena Jovanovic & Rinsuke Yamada & Fatmagül Katmer & Maia G. Vergniory & Pascal Manuel & Max Hirschberger & Leslie M. Schoop, 2024. "Designing giant Hall response in layered topological semimetals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Helena Reichlova & Rafael Lopes Seeger & Rafael González-Hernández & Ismaila Kounta & Richard Schlitz & Dominik Kriegner & Philipp Ritzinger & Michaela Lammel & Miina Leiviskä & Anna Birk Hellenes & K, 2024. "Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58933-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.