Author
Listed:
- Yafeng Bai
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Dongdong Zhang
(Chinese Academy of Sciences)
- Yushan Zeng
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Jiakang Mao
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Liwei Song
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Ye Tian
(Chinese Academy of Sciences
University of Chinese Academy of Sciences)
- Ruxin Li
(Chinese Academy of Sciences
University of Chinese Academy of Sciences
Zhangjiang Laboratory)
Abstract
Relativistic collisionless shocks, which are ubiquitous in the cosmos, play a significant role in various astrophysical phenomena such as gamma-ray bursts, PeVatrons, and supernova shock breakouts. Here we present a demonstration using a compact femtosecond laser system to generate sub-relativistic collisionless shocks (0.03c) under astrophysically relevant conditions. We attribute the shock formation to a rapidly growing Weibel instability in a precisely tuning low-density preplasma environment, which resembles the interstellar media near an astrophysical central engine. Owing to this Weibel instability, a 5000 Tesla magnetic field is developed within 2.7 ps, leading to the collisionless shock formation and subsequent breakout at the preplasma boundaries. This platform enables direct investigation of astrophysics related to relativistic collisionless shocks. The achieved parameters bridge the gap between astrophysical observations and controlled laboratory experiments, offering unprecedented opportunities to validate cosmic shock models.
Suggested Citation
Yafeng Bai & Dongdong Zhang & Yushan Zeng & Jiakang Mao & Liwei Song & Ye Tian & Ruxin Li, 2025.
"Observation of sub-relativistic collisionless shock generation and breakout dynamics,"
Nature Communications, Nature, vol. 16(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58867-3
DOI: 10.1038/s41467-025-58867-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58867-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.