IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58854-8.html
   My bibliography  Save this article

A meta-learning approach for selectivity prediction in asymmetric catalysis

Author

Listed:
  • Sukriti Singh

    (University of Cambridge)

  • José Miguel Hernández-Lobato

    (University of Cambridge)

Abstract

Transition metal-catalyzed asymmetric reactions are of high contemporary importance in organic synthesis. Recently, machine learning (ML) has shown promise in accelerating the development of newer catalytic protocols. However, the need for large amount of experimental data can present a bottleneck for implementing ML models. Here, we propose a meta-learning workflow that can harness the literature-derived data to extract shared reaction features and requires only a few examples to predict the outcome of new reactions. Prototypical networks are used as a meta-learning method to predict the enantioselectivity of asymmetric hydrogenation of olefins. This meta-learning model consistently provides significant performance improvement over other popular ML methods such as random forests and graph neural networks. The performance of our meta-model is analyzed with varying sizes of training examples to demonstrate its utility even with limited data. A good model performance on an out-of-sample test set further indicates the general applicability of our approach. We believe this work will provide a leap forward in identifying promising reactions in the early phases of reaction development when minimal data is available.

Suggested Citation

  • Sukriti Singh & José Miguel Hernández-Lobato, 2025. "A meta-learning approach for selectivity prediction in asymmetric catalysis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58854-8
    DOI: 10.1038/s41467-025-58854-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58854-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58854-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58854-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.