IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58835-x.html
   My bibliography  Save this article

Multimode ultrastrong coupling in three-dimensional photonic-crystal cavities

Author

Listed:
  • Fuyang Tay

    (Rice University
    Rice University)

  • Ali Mojibpour

    (Rice University)

  • Stephen Sanders

    (Rice University)

  • Shuang Liang

    (Purdue University
    Purdue University)

  • Hongjing Xu

    (Rice University)

  • Geoff C. Gardner

    (Purdue University)

  • Andrey Baydin

    (Rice University
    Rice University
    Rice University)

  • Michael J. Manfra

    (Purdue University
    Purdue University
    Purdue University
    Purdue University)

  • Alessandro Alabastri

    (Rice University
    Rice University
    Rice University)

  • David Hagenmüller

    (Université de Strasbourg and CNRS)

  • Junichiro Kono

    (Rice University
    Rice University
    Rice University
    Rice University)

Abstract

Recent theoretical studies have highlighted how spatially varying cavity electromagnetic fields enable novel cavity quantum electrodynamics phenomena, such as the Dicke superradiant phase transition. Three-dimensional photonic-crystal cavities, which exhibit discrete in-plane translational symmetry, overcome this limitation, but fabrication challenges have hindered the achievement of strong coupling. Here, we demonstrate multimode ultrastrong coupling between cavity modes of a three-dimensional photonic-crystal cavity at terahertz frequencies and the cyclotron resonance of a Landau-quantized two-dimensional electron gas in gallium arsenide. The multimode coupling depends on the spatial profiles of the cavity modes, resulting in distinct coupling scenarios based on probe polarization. Our results align with an extended multimode Hopfield model that accounts for spatial field variations. Guided by the model, we discuss possible strong ground-state correlations between cavity modes and introduce relevant figures of merit for multimode ultrastrong coupling. Our findings highlight the crucial role of spatial inhomogeneity in multimode ultrastrong coupling.

Suggested Citation

  • Fuyang Tay & Ali Mojibpour & Stephen Sanders & Shuang Liang & Hongjing Xu & Geoff C. Gardner & Andrey Baydin & Michael J. Manfra & Alessandro Alabastri & David Hagenmüller & Junichiro Kono, 2025. "Multimode ultrastrong coupling in three-dimensional photonic-crystal cavities," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58835-x
    DOI: 10.1038/s41467-025-58835-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58835-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58835-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre Nataf & Cristiano Ciuti, 2010. "No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED," Nature Communications, Nature, vol. 1(1), pages 1-6, December.
    2. Jacqueline Bloch & Andrea Cavalleri & Victor Galitski & Mohammad Hafezi & Angel Rubio, 2022. "Strongly correlated electron–photon systems," Nature, Nature, vol. 606(7912), pages 41-48, June.
    3. Joshua Mornhinweg & Laura Katharina Diebel & Maike Halbhuber & Michael Prager & Josef Riepl & Tobias Inzenhofer & Dominique Bougeard & Rupert Huber & Christoph Lange, 2024. "Mode-multiplexing deep-strong light-matter coupling," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Kenji Ishizaki & Susumu Noda, 2009. "Manipulation of photons at the surface of three-dimensional photonic crystals," Nature, Nature, vol. 460(7253), pages 367-370, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Chen & Ze Wu & Min Jiang & Xin-You Lü & Xinhua Peng & Jiangfeng Du, 2021. "Experimental quantum simulation of superradiant phase transition beyond no-go theorem via antisqueezing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Egor I. Kiselev & Mark S. Rudner & Netanel H. Lindner, 2024. "Inducing exceptional points, enhancing plasmon quality and creating correlated plasmon states with modulated Floquet parametric driving," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Muhammad Ikhwanus & Takeshi Morimoto, 2024. "Rapid Breakdown Time in Positive Impulse Voltages through Spectroscopy Analysis," Energies, MDPI, vol. 17(3), pages 1-15, February.
    4. Christian J. Eckhardt & Sambuddha Chattopadhyay & Dante M. Kennes & Eugene A. Demler & Michael A. Sentef & Marios H. Michael, 2024. "Theory of resonantly enhanced photo-induced superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Changhua Bao & Michael Schüler & Teng Xiao & Fei Wang & Haoyuan Zhong & Tianyun Lin & Xuanxi Cai & Tianshuang Sheng & Xiao Tang & Hongyun Zhang & Pu Yu & Zhiyuan Sun & Wenhui Duan & Shuyun Zhou, 2024. "Manipulating the symmetry of photon-dressed electronic states," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Minkyung Kim & Zihao Wang & Yihao Yang & Hau Tian Teo & Junsuk Rho & Baile Zhang, 2022. "Three-dimensional photonic topological insulator without spin–orbit coupling," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Masanori Sakamoto & Masaki Hada & Wataru Ota & Fumihiko Uesugi & Tohru Sato, 2023. "Localised surface plasmon resonance inducing cooperative Jahn–Teller effect for crystal phase-change in a nanocrystal," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Ke Wei & Qirui Liu & Yuxiang Tang & Yingqian Ye & Zhongjie Xu & Tian Jiang, 2023. "Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Xin Ge Zhang & Ya Lun Sun & Bingcheng Zhu & Han Wei Tian & Bo Yuan Wang & Zaichen Zhang & Cheng-Wei Qiu & Tie Jun Cui & Wei Xiang Jiang, 2025. "Wireless microwave-to-optical conversion via programmable metasurface without DC supply," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58835-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.