IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58805-3.html
   My bibliography  Save this article

Deletion of splicing factor Cdc5 in Toxoplasma disrupts transcriptome integrity, induces abortive bradyzoite formation, and prevents acute infection in mice

Author

Listed:
  • Poonam Kashyap

    (BRIC-National Institute of Animal Biotechnology
    Manipal Academy of Higher Education)

  • Kalyani R. Aswale

    (BRIC-National Institute of Animal Biotechnology
    Manipal Academy of Higher Education)

  • Abhijit S. Deshmukh

    (BRIC-National Institute of Animal Biotechnology
    Manipal Academy of Higher Education)

Abstract

Toxoplasma gondii, an apicomplexan parasite, has over 75% of its genes containing introns; however, the role of RNA splicing in regulating gene expression remains unclear. Here, we demonstrate that the pre-mRNA splicing factor Cdc5 is part of a large spliceosomal complex essential for maintaining the transcriptome integrity in Toxoplasma. TgCdc5 depletion results in splicing inhibition with widespread changes in gene expression affecting several parasite processes, including the lytic cycle, DNA replication and repair, and protein folding and degradation. Consequently, non-cystogenic RH TgCdc5-depleted parasites begin spontaneously differentiating from tachyzoites to slow-growing bradyzoites, evidenced by the differential expression of key developmental regulators; however, these early-stage bradyzoites are unable to survive, likely due to a deficiency in functional proteins necessary for their growth and maintenance. Furthermore, consistent with our in vitro findings, we demonstrate that TgCdc5 is essential for parasite survival in mice, as its depletion provides complete protection against acute infection. Interestingly, this attenuated growth mutant resulting from TgCdc5 depletion elicits a robust immune response that fully protects mice from future infections and offers partial protection during pregnancy. Overall, this study highlights the indispensable role of the splicing factor Cdc5 in preserving transcriptional homeostasis in the intron-rich genome of Toxoplasma.

Suggested Citation

  • Poonam Kashyap & Kalyani R. Aswale & Abhijit S. Deshmukh, 2025. "Deletion of splicing factor Cdc5 in Toxoplasma disrupts transcriptome integrity, induces abortive bradyzoite formation, and prevents acute infection in mice," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58805-3
    DOI: 10.1038/s41467-025-58805-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58805-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58805-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara A. Fox & David J. Bzik, 2002. "De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii," Nature, Nature, vol. 415(6874), pages 926-929, February.
    2. Miklos Csuros & Igor B Rogozin & Eugene V Koonin, 2011. "A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-9, September.
    3. Asma S. Khelifa & Cecilia Guillen Sanchez & Kevin M. Lesage & Ludovic Huot & Thomas Mouveaux & Pierre Pericard & Nicolas Barois & Helene Touzet & Guillemette Marot & Emmanuel Roger & Mathieu Gissot, 2021. "TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Céline Christiansen & Deborah Maus & Ellen Hoppenz & Mateo Murillo-León & Tobias Hoffmann & Jana Scholz & Florian Melerowicz & Tobias Steinfeldt & Frank Seeber & Martin Blume, 2022. "In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Maria E Gallegos & Sanjeev Balakrishnan & Priya Chandramouli & Shaily Arora & Aruna Azameera & Anitha Babushekar & Emilee Bargoma & Abdulmalik Bokhari & Siva Kumari Chava & Pranti Das & Meetali Desai , 2012. "The C. elegans Rab Family: Identification, Classification and Toolkit Construction," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-19, November.
    3. Xuefang Guo & Nuo Ji & Qinghong Guo & Mengting Wang & Huiyu Du & Jiajia Pan & Lihua Xiao & Nishith Gupta & Yaoyu Feng & Ningbo Xia, 2024. "Metabolic plasticity, essentiality and therapeutic potential of ribose-5-phosphate synthesis in Toxoplasma gondii," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58805-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.