IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58804-4.html
   My bibliography  Save this article

Pre-trained molecular representations enable antimicrobial discovery

Author

Listed:
  • Roberto Olayo-Alarcon

    (Ludwig-Maximilians-Universität München
    Helmholtz Zentrum München)

  • Martin K. Amstalden

    (Julius-Maximilians-Universität Würzburg)

  • Annamaria Zannoni

    (Julius-Maximilians-Universität Würzburg)

  • Medina Bajramovic

    (Ludwig-Maximilians-Universität München
    Helmholtz Zentrum München)

  • Cynthia M. Sharma

    (Julius-Maximilians-Universität Würzburg)

  • Ana Rita Brochado

    (Julius-Maximilians-Universität Würzburg
    University of Tübingen
    University of Tübingen)

  • Mina Rezaei

    (Ludwig-Maximilians-Universität München)

  • Christian L. Müller

    (Ludwig-Maximilians-Universität München
    Helmholtz Zentrum München
    Flatiron Institute)

Abstract

The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compound-centric deep learning models promise to accelerate this search and prioritization process, current strategies require large amounts of custom training data. Here, we introduce a lightweight computational strategy for antimicrobial discovery that builds on MolE (Molecular representation through redundancy reduced Embedding), a self-supervised deep learning framework that leverages unlabeled chemical structures to learn task-independent molecular representations. By combining MolE representation learning with available, experimentally validated compound-bacteria activity data, we design a general predictive model that enables assessing compounds with respect to their antimicrobial potential. Our model correctly identifies recent growth-inhibitory compounds that are structurally distinct from current antibiotics. Using this approach, we discover de novo, and experimentally confirm, three human-targeted drugs as growth inhibitors of Staphylococcus aureus. This framework offers a viable, cost-effective strategy to accelerate antibiotic discovery.

Suggested Citation

  • Roberto Olayo-Alarcon & Martin K. Amstalden & Annamaria Zannoni & Medina Bajramovic & Cynthia M. Sharma & Ana Rita Brochado & Mina Rezaei & Christian L. Müller, 2025. "Pre-trained molecular representations enable antimicrobial discovery," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58804-4
    DOI: 10.1038/s41467-025-58804-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58804-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58804-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lisa Maier & Mihaela Pruteanu & Michael Kuhn & Georg Zeller & Anja Telzerow & Exene Erin Anderson & Ana Rita Brochado & Keith Conrad Fernandez & Hitomi Dose & Hirotada Mori & Kiran Raosaheb Patil & Pe, 2018. "Extensive impact of non-antibiotic drugs on human gut bacteria," Nature, Nature, vol. 555(7698), pages 623-628, March.
    2. Paulina Szymczak & Marcin Możejko & Tomasz Grzegorzek & Radosław Jurczak & Marta Bauer & Damian Neubauer & Karol Sikora & Michał Michalski & Jacek Sroka & Piotr Setny & Wojciech Kamysz & Ewa Szczurek, 2023. "Discovering highly potent antimicrobial peptides with deep generative model HydrAMP," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Paulina Szymczak & Marcin Możejko & Tomasz Grzegorzek & Radosław Jurczak & Marta Bauer & Damian Neubauer & Karol Sikora & Michał Michalski & Jacek Sroka & Piotr Setny & Wojciech Kamysz & Ewa Szczurek, 2023. "Author Correction: Discovering highly potent antimicrobial peptides with deep generative model HydrAMP," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    4. Yadid M. Algavi & Elhanan Borenstein, 2023. "A data-driven approach for predicting the impact of drugs on the human microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Felix Wong & Erica J. Zheng & Jacqueline A. Valeri & Nina M. Donghia & Melis N. Anahtar & Satotaka Omori & Alicia Li & Andres Cubillos-Ruiz & Aarti Krishnan & Wengong Jin & Abigail L. Manson & Jens Fr, 2024. "Discovery of a structural class of antibiotics with explainable deep learning," Nature, Nature, vol. 626(7997), pages 177-185, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad M Al-Omari & Yazan H Akkam & Ala’a Zyout & Shayma’a Younis & Shefa M Tawalbeh & Khaled Al-Sawalmeh & Amjed Al Fahoum & Jonathan Arnold, 2024. "Accelerating antimicrobial peptide design: Leveraging deep learning for rapid discovery," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-26, December.
    2. Amir Pandi & David Adam & Amir Zare & Van Tuan Trinh & Stefan L. Schaefer & Marie Burt & Björn Klabunde & Elizaveta Bobkova & Manish Kushwaha & Yeganeh Foroughijabbari & Peter Braun & Christoph Spahn , 2023. "Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Yixiang Ruan & Chenyin Lu & Ning Xu & Yuchen He & Yixin Chen & Jian Zhang & Jun Xuan & Jianzhang Pan & Qun Fang & Hanyu Gao & Xiaodong Shen & Ning Ye & Qiang Zhang & Yiming Mo, 2024. "An automatic end-to-end chemical synthesis development platform powered by large language models," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yonggan Sun & Qixing Nie & Shanshan Zhang & Huijun He & Sheng Zuo & Chunhua Chen & Jingrui Yang & Haihong Chen & Jielun Hu & Song Li & Jiaobo Cheng & Baojie Zhang & Zhitian Zheng & Shijie Pan & Ping H, 2023. "Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Sanne Kroon & Dejan Malcic & Lena Weidert & Lea Bircher & Leonardo Boldt & Philipp Christen & Patrick Kiefer & Anna Sintsova & Bidong D. Nguyen & Manja Barthel & Yves Steiger & Melanie Clerc & Mathias, 2025. "Sublethal systemic LPS in mice enables gut-luminal pathogens to bloom through oxygen species-mediated microbiota inhibition," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    6. Karolína Ondrová & Iveta Zůvalová & Barbora Vyhlídalová & Kristýna Krasulová & Eva Miková & Radim Vrzal & Petr Nádvorník & Binod Nepal & Sandhya Kortagere & Martina Kopečná & David Kopečný & Marek Šeb, 2023. "Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Christopher J. Barden & Fan Wu & J. Pedro Fernandez-Murray & Erhu Lu & Shengguo Sun & Marcia M. Taylor & Annette L. Rushton & Jason Williams & Mahtab Tavasoli & Autumn Meek & Alla Siva Reddy & Lisa M., 2024. "Computer-aided drug design to generate a unique antibiotic family," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Lu Wu & Xu-Wen Wang & Zining Tao & Tong Wang & Wenlong Zuo & Yu Zeng & Yang-Yu Liu & Lei Dai, 2024. "Data-driven prediction of colonization outcomes for complex microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Oliver Aasmets & Kertu Liis Krigul & Kreete Lüll & Andres Metspalu & Elin Org, 2022. "Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Daniel P. Newton & Po-Yi Ho & Kerwyn Casey Huang, 2023. "Modulation of antibiotic effects on microbial communities by resource competition," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yi-Fei Wang & Yan-Jie Liu & Yan-Mei Fu & Jia-Yang Xu & Tian-Lun Zhang & Hui-Ling Cui & Min Qiao & Matthias C. Rillig & Yong-Guan Zhu & Dong Zhu, 2024. "Microplastic diversity increases the abundance of antibiotic resistance genes in soil," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Reilly Pidgeon & Sacha Mitchell & Michael Shamash & Layan Suleiman & Lharbi Dridi & Corinne F. Maurice & Bastien Castagner, 2025. "Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    13. Xuanji Li & Asker Brejnrod & Jonathan Thorsen & Trine Zachariasen & Urvish Trivedi & Jakob Russel & Gisle Alberg Vestergaard & Jakob Stokholm & Morten Arendt Rasmussen & Søren Johannes Sørensen, 2023. "Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Cédric Diot & Aurian P. García-González & Andre F. Vieira & Melissa Walker & Megan Honeywell & Hailey Doyle & Olga Ponomarova & Yomari Rivera & Huimin Na & Hefei Zhang & Michael Lee & Carissa P. Olsen, 2022. "Bacterial diet modulates tamoxifen-induced death via host fatty acid metabolism," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58804-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.