IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58733-2.html
   My bibliography  Save this article

CoOx clusters-decorated IrO2 electrocatalyst activates NO3- mediator for benzylic C-H activation

Author

Listed:
  • Ziyu Mi

    (Nanyang Technological University
    Technology and Research (A*STAR); 1 Pesek Road Jurong Island)

  • Yuke Li

    (#16-16 Connexis)

  • Chao Wu

    (Technology and Research (A*STAR); 1 Pesek Road Jurong Island)

  • Mingsheng Zhang

    (#08-03 Innovis)

  • Xun Cao

    (Technology and Research (A*STAR); 1 Pesek Road Jurong Island)

  • Shibo Xi

    (Technology and Research (A*STAR); 1 Pesek Road Jurong Island)

  • Jia Zhang

    (#16-16 Connexis)

  • Wan Ru Leow

    (Nanyang Technological University
    Technology and Research (A*STAR); 1 Pesek Road Jurong Island)

Abstract

Electrochemical conversion of petrochemical-derived hydrocarbons to high-value oxygenates can utilize renewable energy and reduce carbon emissions. However, this involves the challenging activation of inert C(sp3)-H bonds at room temperature. Here, we introduce an electrocatalyst:mediator assembly in which CoOx clusters-decorated IrO2 electrocatalyst activates NO3- mediator to a highly reactive radical capable of abstracting a hydrogen atom from benzylic C-H. The interface between CoOx and IrO2 promotes NO3- activation by facilitating the desorption of NO3● radical for subsequent reaction. Our strategy is demonstrated through the selective oxidation of toluene to benzaldehyde with high Faradaic efficiency of 86( ±1)% at 25 mA/cm2, a factor of >3 times higher than the bare electrocatalyst. The electrocatalyst:mediator assembly is operated stably for 100 h, with minimal decline in performance. When translated into a flow system, a Faradaic efficiency of 60( ±4)% at 200 mA/cm2 was achieved.

Suggested Citation

  • Ziyu Mi & Yuke Li & Chao Wu & Mingsheng Zhang & Xun Cao & Shibo Xi & Jia Zhang & Wan Ru Leow, 2025. "CoOx clusters-decorated IrO2 electrocatalyst activates NO3- mediator for benzylic C-H activation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58733-2
    DOI: 10.1038/s41467-025-58733-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58733-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58733-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evan J. Horn & Brandon R. Rosen & Yong Chen & Jiaze Tang & Ke Chen & Martin D. Eastgate & Phil S. Baran, 2016. "Scalable and sustainable electrochemical allylic C–H oxidation," Nature, Nature, vol. 533(7601), pages 77-81, May.
    2. Joachim Nikl & Kamil Hofman & Samuel Mossazghi & Isabel C. Möller & Daniel Mondeshki & Frank Weinelt & Franz-Erich Baumann & Siegfried R. Waldvogel, 2023. "Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zhenhua Li & Lan Luo & Min Li & Wangsong Chen & Yuguang Liu & Jiangrong Yang & Si-Min Xu & Hua Zhou & Lina Ma & Ming Xu & Xianggui Kong & Haohong Duan, 2021. "Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Yingzhang Shi & Peng Li & Huiling Chen & Zhiwen Wang & Yujie Song & Yu Tang & Sen Lin & Zhiyang Yu & Ling Wu & Jimmy C. Yu & Xianzhi Fu, 2024. "Photocatalytic toluene oxidation with nickel-mediated cascaded active units over Ni/Bi2WO6 monolayers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Tengfei Li & Takahito Kasahara & Jingfu He & Kevan E. Dettelbach & Glenn M. Sammis & Curtis P. Berlinguette, 2017. "Photoelectrochemical oxidation of organic substrates in organic media," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinghao Wang & Siyang Li & Caoyu Yang & Huiwen Gao & Lulu Zuo & Zhiyu Guo & Pengqi Yang & Yuheng Jiang & Jian Li & Li-Zhu Wu & Zhiyong Tang, 2024. "Photoelectrochemical Ni-catalyzed cross-coupling of aryl bromides with amine at ultra-low potential," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Anzai Shi & Pengfei Xie & Yanwei Wang & Youai Qiu, 2025. "Photoelectrocatalytic Cl-mediated C(sp3)–H aminomethylation of hydrocarbons by BiVO4 photoanodes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Kaifa Du & Enlai Gao & Chunbo Zhang & Yongsong Ma & Peilin Wang & Rui Yu & Wenmiao Li & Kaiyuan Zheng & Xinhua Cheng & Diyong Tang & Bowen Deng & Huayi Yin & Dihua Wang, 2023. "An iron-base oxygen-evolution electrode for high-temperature electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Weicheng Shen & Tingting Hu & Xueyan Liu & Jiajia Zha & Fanqi Meng & Zhikang Wu & Zhuolin Cui & Yu Yang & Hai Li & Qinghua Zhang & Lin Gu & Ruizheng Liang & Chaoliang Tan, 2022. "Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Zhenhua Li & Lan Luo & Min Li & Wangsong Chen & Yuguang Liu & Jiangrong Yang & Si-Min Xu & Hua Zhou & Lina Ma & Ming Xu & Xianggui Kong & Haohong Duan, 2021. "Photoelectrocatalytic C–H halogenation over an oxygen vacancy-rich TiO2 photoanode," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Bailin Tian & Fangyuan Wang & Pan Ran & Luhan Dai & Yang Lv & Yuxia Sun & Zhangyan Mu & Yamei Sun & Lingyu Tang & William A. Goddard & Mengning Ding, 2024. "Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Bing Zhang & Wei Liu & Zhu Liu & Yuhou Pei & Di Li & Hongbin Yang & Chuntian Qiu & Yang Fan & Yinghua Xu & Jie Ding & Lei Yu & Bin Liu & Chenliang Su, 2025. "Scalable and efficient electrochemical bromination of arenes with Faradaic efficiencies surpassing 90%," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Yang Liu & Huishan Shang & Bing Zhang & Dongpeng Yan & Xu Xiang, 2024. "Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zhonghe Wang & Yang Tang & Songtao Liu & Liang Zhao & Huaqing Li & Cheng He & Chunying Duan, 2024. "Energy transfer-mediated multiphoton synergistic excitation for selective C(sp3)–H functionalization with coordination polymer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Pan Ran & Aoqian Qiu & Tianshu Liu & Fangyuan Wang & Bailin Tian & Beiyao Xiang & Jun Li & Yang Lv & Mengning Ding, 2024. "Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Zhiwei Zhao & Ranran Zhang & Yaowen Liu & Zile Zhu & Qiuyan Wang & Youai Qiu, 2024. "Electrochemical C−H deuteration of pyridine derivatives with D2O," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Qixue Qin & Liang Zhang & Jialiang Wei & Xu Qiu & Shuanghong Hao & Xiao-De An & Ning Jiao, 2024. "Direct oxygen insertion into C-C bond of styrenes with air," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Min Liu & Tian Feng & Yanwei Wang & Guangsheng Kou & Qiuyan Wang & Qian Wang & Youai Qiu, 2023. "Metal-free electrochemical dihydroxylation of unactivated alkenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Bo Wu & Ruihu Lu & Chao Wu & Tenghui Yuan & Bin Liu & Xi Wang & Chenyi Fang & Ziyu Mi & Surani Dolmanan & Weng Weei Tjiu & Mingsheng Zhang & Bingqing Wang & Zainul Aabdin & Sui Zhang & Yi Hou & Bote Z, 2025. "Pt/IrOx enables selective electrochemical C-H chlorination at high current," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58733-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.