IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58732-3.html
   My bibliography  Save this article

Molecular insights into the overall architecture of human rixosome

Author

Listed:
  • Ji Huang

    (Columbia University)

  • Liang Tong

    (Columbia University)

Abstract

Rixosome is a conserved, multi-subunit protein complex that has critical roles in ribosome biogenesis and silencing of Polycomb target genes. The subunits of human rixosome include PELP1, WDR18, TEX10, LAS1L and NOL9, with LAS1L providing the endoribonuclease activity and NOL9 the RNA 5′ kinase activity. We report here cryo-EM structures of the human PELP1-WDR18-TEX10 and LAS1L-NOL9 complexes and a lower-resolution model of the human PELP1-WDR18-LAS1L complex. The structures reveal the overall organization of the human rixosome core scaffold of PELP1-WDR18-TEX10-LAS1L and indicate how the LAS1L-NOL9 endonuclease/kinase catalytic module is recruited to this core scaffold. Each TEX10 molecule has two regions of contact with WDR18, while the helix at the C terminus of WDR18 interacts with the helical domain of LAS1L. The structural observations are supported by our mutagenesis studies. Mutations in both WDR18-TEX10 contact regions can block the binding of TEX10, while truncation of the C-terminal helix of WDR18 can abolish the binding of LAS1L. The structures also reveal substantial conformational differences for TEX10 between the PELP1-WDR18-TEX10 complex alone and that in complex with pre-ribosome.

Suggested Citation

  • Ji Huang & Liang Tong, 2025. "Molecular insights into the overall architecture of human rixosome," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58732-3
    DOI: 10.1038/s41467-025-58732-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58732-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58732-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    3. Jacob Gordon & Fleur L. Chapus & Elizabeth G. Viverette & Jason G. Williams & Leesa J. Deterding & Juno M. Krahn & Mario J. Borgnia & Joseph Rodriguez & Alan J. Warren & Robin E. Stanley, 2022. "Cryo-EM reveals the architecture of the PELP1-WDR18 molecular scaffold," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Haining Zhou & Chad B. Stein & Tiasha A. Shafiq & Gergana Shipkovenska & Marian Kalocsay & Joao A. Paulo & Jiuchun Zhang & Zhenhua Luo & Steven P. Gygi & Karen Adelman & Danesh Moazed, 2022. "Rixosomal RNA degradation contributes to silencing of Polycomb target genes," Nature, Nature, vol. 604(7904), pages 167-174, April.
    5. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 636(8042), pages 4-4, December.
    6. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    7. Lisa Fromm & Sebastian Falk & Dirk Flemming & Jan Michael Schuller & Matthias Thoms & Elena Conti & Ed Hurt, 2017. "Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Julian O. Streit & Sammy H. S. Chan & Saifu Daya & John Christodoulou, 2025. "Rational design of 19F NMR labelling sites to probe protein structure and interactions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. William J. Nicolas & Anna Shiriaeva & Michael W. Martynowycz & Angus C. Grey & Yasmeen N. Ruma & Paul J. Donaldson & Tamir Gonen, 2025. "Structure of the lens MP20 mediated adhesive junction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    6. James Hodgkinson-Bean & Rafael Ayala & Nadishka Jayawardena & Georgia L. Rutter & Bridget N. J. Watson & David Mayo-Muñoz & James Keal & Peter C. Fineran & Matthias Wolf & Mihnea Bostina, 2025. "Global structural survey of the flagellotropic myophage φTE infecting agricultural pathogen Pectobacterium atrosepticum," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    7. Stephen A. Rettie & Katelyn V. Campbell & Asim K. Bera & Alex Kang & Simon Kozlov & Yensi Flores Bueso & Joshmyn Cruz & Maggie Ahlrichs & Suna Cheng & Stacey R. Gerben & Mila Lamb & Analisa Murray & V, 2025. "Cyclic peptide structure prediction and design using AlphaFold2," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Melissa V. Gammons & Elsa Franco-Echevarría & Tie-Mei Li & Trevor J. Rutherford & Miha Renko & Christopher Batters & Mariann Bienz, 2025. "Wnt signalosome assembly is governed by conformational flexibility of Axin and by the AP2 clathrin adaptor," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    9. Yu Wang & Sen Wang & Yuanyuan Chen & Chunlan Xie & Haibo Xu & Yunhua Lin & Ranxun Lin & Wanlin Zeng & Xuan Chen & Xinyi Nie & Shihua Wang, 2025. "The role of Npt1 in regulating antifungal protein activity in filamentous fungi," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    10. Qi Gao & Florian W. Hofer & Sebastian Filbeck & Bram J. A. Vermeulen & Martin Würtz & Annett Neuner & Charlotte Kaplan & Maja Zezlina & Cornelia Sala & Hyesu Shin & Oliver J. Gruss & Elmar Schiebel & , 2025. "Structural mechanisms for centrosomal recruitment and organization of the microtubule nucleator γ-TuRC," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    11. Tongqing Li & Steven E. Stayrook & Wenxue Li & Yueyue Wang & Hengyi Li & Jianan Zhang & Yansheng Liu & Daryl E. Klein, 2025. "Crystal structure of Isthmin-1 and reassessment of its functional role in pre-adipocyte signaling," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Ruifang Ma & Bowen Du & Chen Shi & Lei Wang & Fuxing Zeng & Jie Han & Huiyi Guan & Yong Wang & Kaige Yan, 2025. "Molecular basis for the regulation of human phosphorylase kinase by phosphorylation and Ca2+," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Tanmoy Paul & Chunli Yan & Jina Yu & Susan E. Tsutakawa & John A. Tainer & Dong Wang & Ivaylo Ivanov, 2025. "Molecular model of TFIIH recruitment to the transcription-coupled repair machinery," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    14. Julien Herrou & Laetitia My & Caroline L. Monteil & Marine Bergot & Rikesh Jain & Emmanuelle Martinez & Tâm Mignot, 2025. "Tad pili with adaptable tips mediate contact-dependent killing during bacterial predation," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    15. Z. Faidon Brotzakis & Shengyu Zhang & Mhd Hussein Murtada & Michele Vendruscolo, 2025. "AlphaFold prediction of structural ensembles of disordered proteins," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    16. Jiaxin Tan & Yuan Xiao & Fang Kong & Jiawei Qian & Angqi Zhu & Chuangye Yan, 2025. "Structural insights into thyroid hormone transporter MCT8," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    17. Haaris A. Safdari & Martino Morici & Ana Sanchez-Castro & Andrea Dallapè & Helge Paternoga & Anna Maria Giuliodori & Attilio Fabbretti & Pohl Milón & Daniel N. Wilson, 2025. "The translation inhibitors kasugamycin, edeine and GE81112 target distinct steps during 30S initiation complex formation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Jane Dudley-Fraser & Diego Esposito & Katherine A. McPhie & Coltrane Morley-Williams & Tania Auchynnikava & Katrin Rittinger, 2025. "Identification of RING E3 pseudoligases in the TRIM protein family," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    19. Florian Malard & Kristen Dias & Margaux Baudy & Stéphane Thore & Brune Vialet & Philippe Barthélémy & Sébastien Fribourg & Fedor V. Karginov & Sébastien Campagne, 2025. "Molecular basis for the calcium-dependent activation of the ribonuclease EndoU," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Qianqian Ming & Daniel Antfolk & David A. Price & Anna Manturova & Elliot Medina & Srishti Singh & Charlotte Mason & Timothy H. Tran & Keiran S. M. Smalley & Daisy W. Leung & Vincent C. Luca, 2024. "Structural basis for mouse LAG3 interactions with the MHC class II molecule I-Ab," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58732-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.