IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58690-w.html
   My bibliography  Save this article

A naturally selected αβ T cell receptor binds HLA-DQ2 molecules without co-contacting the presented peptide

Author

Listed:
  • Jia Jia Lim

    (Monash University)

  • Claerwen M. Jones

    (Monash University)

  • Tiing Jen Loh

    (Monash University)

  • Hien Thy Dao

    (Monash University)

  • Mai T. Tran

    (Monash University)

  • Jason A. Tye-Din

    (The Walter and Eliza Hall Institute)

  • Nicole L. Gruta

    (Monash University)

  • Jamie Rossjohn

    (Monash University
    Cardiff University School of Medicine)

Abstract

αβ T cell receptors (TCR) co-recognise peptide (p) antigens that are presented by major histocompatibility complex (MHC) molecules. While marked variations in TCR-p-MHC docking topologies have been observed from structural studies, the co-recognition paradigm has held fast. Using HLA-DQ2.5-peptide tetramers, here we identify a TRAV12-1+-TRBV5-1+ G9 TCR from human peripheral blood that binds HLA-DQ2.5 in a peptide-agnostic manner. The crystal structures of TCR-HLA-DQ2.5-peptide complexes show that the G9 TCR binds HLA-DQ2.5 in a reversed docking topology without contacting the peptide, with the TCR contacting the β1 region of HLA-DQ2.5 and distal from the peptide antigen binding cleft. High-throughput screening of HLA class I and II molecules finds the G9 TCR to be pan-HLA-DQ2 reactive, with leucine-55 of HLA-DQ2.5 being a key determinant underpinning G9 TCR specificity excluding other HLA-II allomorphs. Consistent with the functional assays, the interactions of the G9 TCR and HLA-DQ2.5 precludes CD4 binding, thereby impeding T cell activation. Collectively, we describe a naturally selected αβTCR from human peripheral blood that deviates from the TCR-p-MHC co-recognition paradigm.

Suggested Citation

  • Jia Jia Lim & Claerwen M. Jones & Tiing Jen Loh & Hien Thy Dao & Mai T. Tran & Jason A. Tye-Din & Nicole L. Gruta & Jamie Rossjohn, 2025. "A naturally selected αβ T cell receptor binds HLA-DQ2 molecules without co-contacting the presented peptide," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58690-w
    DOI: 10.1038/s41467-025-58690-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58690-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58690-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mai T. Tran & Pouya Faridi & Jia Jia Lim & Yi Tian Ting & Goodluck Onwukwe & Pushpak Bhattacharjee & Claerwen M. Jones & Eleonora Tresoldi & Fergus J. Cameron & Nicole L. Gruta & Anthony W. Purcell & , 2021. "T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Muaz Nik Rushdi & Victor Pan & Kaitao Li & Hyun-Kyu Choi & Stefano Travaglino & Jinsung Hong & Fletcher Griffitts & Pragati Agnihotri & Roy A. Mariuzza & Yonggang Ke & Cheng Zhu, 2022. "Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Daichao Wu & D. Travis Gallagher & Ragul Gowthaman & Brian G. Pierce & Roy A. Mariuzza, 2020. "Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Catarina F. Almeida & Benjamin S. Gully & Claerwen M. Jones & Lukasz Kedzierski & Sachith D. Gunasinghe & Michael T. Rice & Richard Berry & Nicholas A. Gherardin & Trang T. Nguyen & Yee-Foong Mok & Jo, 2024. "Direct recognition of an intact foreign protein by an αβ T cell receptor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Marcin Wegrecki & Tonatiuh A. Ocampo & Sachith D. Gunasinghe & Anouk Borstel & Shin Yi Tin & Josephine F. Reijneveld & Thinh-Phat Cao & Benjamin S. Gully & Jérôme Nours & D. Branch Moody & Ildiko Rhij, 2022. "Atypical sideways recognition of CD1a by autoreactive γδ T cell receptors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun-Kyu Choi & Peiwen Cong & Chenghao Ge & Aswin Natarajan & Baoyu Liu & Yong Zhang & Kaitao Li & Muaz Nik Rushdi & Wei Chen & Jizhong Lou & Michelle Krogsgaard & Cheng Zhu, 2023. "Catch bond models may explain how force amplifies TCR signaling and antigen discrimination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Katharine M. Wright & Sarah R. DiNapoli & Michelle S. Miller & P. Aitana Azurmendi & Xiaowei Zhao & Zhiheng Yu & Mayukh Chakrabarti & WuXian Shi & Jacqueline Douglass & Michael S. Hwang & Emily Han-Ch, 2023. "Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Cecily Choy & Joseph Chen & Jiangyuan Li & D. Travis Gallagher & Jian Lu & Daichao Wu & Ainslee Zou & Humza Hemani & Beverly A. Baptiste & Emily Wichmann & Qian Yang & Jeffrey Ciffelo & Rui Yin & Juli, 2023. "SARS-CoV-2 infection establishes a stable and age-independent CD8+ T cell response against a dominant nucleocapsid epitope using restricted T cell receptors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Kevin A. Kovalchik & David J. Hamelin & Peter Kubiniok & Benoîte Bourdin & Fatima Mostefai & Raphaël Poujol & Bastien Paré & Shawn M. Simpson & John Sidney & Éric Bonneil & Mathieu Courcelles & Sunil , 2024. "Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Clare S. Hardman & Yi-Ling Chen & Marcin Wegrecki & Soo Weei Ng & Robert Murren & Davinderpreet Mangat & John-Paul Silva & Rebecca Munro & Win Yan Chan & Victoria O’Dowd & Carl Doyle & Prashant Mori &, 2022. "CD1a promotes systemic manifestations of skin inflammation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. John P. Finnigan & Jenna H. Newman & Yury Patskovsky & Larysa Patskovska & Andrew S. Ishizuka & Geoffrey M. Lynn & Robert A. Seder & Michelle Krogsgaard & Nina Bhardwaj, 2024. "Structural basis for self-discrimination by neoantigen-specific TCRs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Andrew Poole & Vijaykumar Karuppiah & Annabelle Hartt & Jaafar N. Haidar & Sylvie Moureau & Tomasz Dobrzycki & Conor Hayes & Christopher Rowley & Jorge Dias & Stephen Harper & Keir Barnbrook & Miriam , 2022. "Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Nishant K. Singh & Jesus A. Alonso & Jason R. Devlin & Grant L. J. Keller & George I. Gray & Adarsh K. Chiranjivi & Sara G. Foote & Lauren M. Landau & Alyssa G. Arbuiso & Laura I. Weiss & Aaron M. Ros, 2022. "A class-mismatched TCR bypasses MHC restriction via an unorthodox but fully functional binding geometry," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Tiing Jen Loh & Jia Jia Lim & Claerwen M. Jones & Hien Thy Dao & Mai T. Tran & Daniel G. Baker & Nicole L. Gruta & Hugh H. Reid & Jamie Rossjohn, 2024. "The molecular basis underlying T cell specificity towards citrullinated epitopes presented by HLA-DR4," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58690-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.