IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58685-7.html
   My bibliography  Save this article

Patterns and drivers of Holocene moisture variability in mid-latitude eastern North America

Author

Listed:
  • J. Sakari Salonen

    (University of Helsinki)

  • Frederik Schenk

    (University of Helsinki
    Stockholm University
    Stockholm University)

  • John W. Williams

    (University of Wisconsin-Madison)

  • Bryan Shuman

    (University of Wyoming)

  • Ana L. Lindroth Dauner

    (University of Helsinki)

  • Sebastian Wagner

    (Helmholtz-Zentrum Hereon)

  • Johann Jungclaus

    (Max-Planck-Institute for Meteorology)

  • Qiong Zhang

    (Stockholm University
    Stockholm University)

  • Miska Luoto

    (University of Helsinki)

Abstract

Proxy data for eastern North American hydroclimate indicate strong and persistent multi-millennial droughts during the Holocene, but climate model simulations often fail to reproduce the proxy-inferred droughts. Diagnosing the data–model mismatch can offer valuable insights about the drivers of hydrological variability and different regional sensitivities to hydroclimate forcing. Here we present a proxy–modeling synthesis for Holocene climates in the eastern North American mid-latitudes, including machine-learning-based water balance reconstructions and high-resolution climate simulations. These data-model results resolve prior-generation inconsistencies, show consistent spatiotemporal patterns of Holocene hydroclimate change, and enable assessment of the driving mechanisms. This agreement suggests that the secular summer insolation trend, combined with the Laurentide Ice Sheet deglaciation and its effect on atmospheric circulation, together explain the extent and duration of drier-than-present climates. In addition, our high-resolution proxy data and transient simulations reveal clear multi-centennial climate variability. In our simulations, temperature-driven increases in evapotranspiration exceed regional precipitation gains, drying much of the region during the mid Holocene. This suggests that the mid-Holocene multi-millennial drought was driven by similar processes compared to the drying trajectory projected for mid-latitude North America over this century, which is also primarily driven by warming.

Suggested Citation

  • J. Sakari Salonen & Frederik Schenk & John W. Williams & Bryan Shuman & Ana L. Lindroth Dauner & Sebastian Wagner & Johann Jungclaus & Qiong Zhang & Miska Luoto, 2025. "Patterns and drivers of Holocene moisture variability in mid-latitude eastern North America," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58685-7
    DOI: 10.1038/s41467-025-58685-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58685-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58685-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Bader & Johann Jungclaus & Natalie Krivova & Stephan Lorenz & Amanda Maycock & Thomas Raddatz & Hauke Schmidt & Matthew Toohey & Chi-Ju Wu & Martin Claussen, 2020. "Global temperature modes shed light on the Holocene temperature conundrum," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Frederik Schenk & Minna Väliranta & Francesco Muschitiello & Lev Tarasov & Maija Heikkilä & Svante Björck & Jenny Brandefelt & Arne V. Johansson & Jens-Ove Näslund & Barbara Wohlfarth, 2018. "Warm summers during the Younger Dryas cold reversal," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Xueyuan Kuang & Frederik Schenk & Rienk Smittenberg & Petter Hällberg & Qiong Zhang, 2021. "Seasonal evolution differences of east Asian summer monsoon precipitation between Bølling-Allerød and younger Dryas periods," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    4. Feng He & Jeremy D. Shakun & Peter U. Clark & Anders E. Carlson & Zhengyu Liu & Bette L. Otto-Bliesner & John E. Kutzbach, 2013. "Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation," Nature, Nature, vol. 494(7435), pages 81-85, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Olivier Cartapanis & Lukas Jonkers & Paola Moffa-Sanchez & Samuel L. Jaccard & Anne Vernal, 2022. "Complex spatio-temporal structure of the Holocene Thermal Maximum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yancheng Zhang & Xufeng Zheng & Deming Kong & Hong Yan & Zhonghui Liu, 2021. "Enhanced North Pacific subtropical gyre circulation during the late Holocene," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Gagan Mandal & Shih-Yu Lee & Jia-Yuh Yu, 2021. "The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    5. Pablo Torres & Soledad Le Clainche & Ricardo Vinuesa, 2021. "On the Experimental, Numerical and Data-Driven Methods to Study Urban Flows," Energies, MDPI, vol. 14(5), pages 1-38, February.
    6. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Xueyuan Kuang & Frederik Schenk & Rienk Smittenberg & Petter Hällberg & Qiong Zhang, 2021. "Seasonal evolution differences of east Asian summer monsoon precipitation between Bølling-Allerød and younger Dryas periods," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    8. Gagan Mandal & Jia-Yuh Yu & Shih-Yu Lee, 2022. "The Roles of Orbital and Meltwater Climate Forcings on the Southern Ocean Dynamics during the Last Deglaciation," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    9. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Daniel P. Lowry & Holly K. Han & Nicholas R. Golledge & Natalya Gomez & Katelyn M. Johnson & Robert M. McKay, 2024. "Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Dawei Li & Robert M. DeConto & David Pollard & Yongyun Hu, 2024. "Competing climate feedbacks of ice sheet freshwater discharge in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Jiawei Jiang & Bowen Meng & Huanye Wang & Hu Liu & Mu Song & Yuxin He & Cheng Zhao & Jun Cheng & Guoqiang Chu & Sergey Krivonogov & Weiguo Liu & Zhonghui Liu, 2024. "Spatial patterns of Holocene temperature changes over mid-latitude Eurasia," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58685-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.