IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58645-1.html
   My bibliography  Save this article

Enhancing thermoelectric output in a molecular heat engine utilizing Yu-Shiba-Rusinov bound states

Author

Listed:
  • Serhii Volosheniuk

    (Delft University of Technology)

  • Damian Bouwmeester

    (Delft University of Technology)

  • David Vogel

    (University of Basel)

  • Christina Wegeberg

    (University of Basel
    Lund University)

  • Chunwei Hsu

    (Delft University of Technology)

  • Marcel Mayor

    (University of Basel
    Karlsruhe Institute of Technology (KIT)
    Sun Yat-Sen University (SYSU))

  • Herre S. J. Zant

    (Delft University of Technology)

  • Pascal Gehring

    (Université catholique de Louvain)

Abstract

Particle exchange heat engines are a novel class of cyclic heat engines that are all-electrical, contain no moving parts and can therefore be scaled down to nanometer size. At the center of their operation is the manipulation of a particle flow between a hot and a cold reservoir through energy filtering mechanisms, where their efficiency depends primarily on the sharpness of the energy filter. In this study, we investigate the efficiency enhancement of such engines by utilizing ultra-sharp transmission resonances formed by magnetic impurities interacting with superconductors, known as Yu-Shiba-Rusinov bound states. To this end, we couple a neutral and stable diradical molecule to superconducting break-junction electrodes, and study its thermoelectric properties at ultra-low temperatures. By driving the molecular heat engine through a phase transition from a Kondo state into the Yu-Shiba-Rusinov regime, we observe a five fold increase in the thermoelectric power factor. This observation could pave the way for practical applications such as cryogenic waste heat recovery and efficient spot-cooling for future quantum computing architectures.

Suggested Citation

  • Serhii Volosheniuk & Damian Bouwmeester & David Vogel & Christina Wegeberg & Chunwei Hsu & Marcel Mayor & Herre S. J. Zant & Pascal Gehring, 2025. "Enhancing thermoelectric output in a molecular heat engine utilizing Yu-Shiba-Rusinov bound states," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58645-1
    DOI: 10.1038/s41467-025-58645-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58645-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58645-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Roch & Serge Florens & Vincent Bouchiat & Wolfgang Wernsdorfer & Franck Balestro, 2008. "Quantum phase transition in a single-molecule quantum dot," Nature, Nature, vol. 453(7195), pages 633-637, May.
    2. Anindya Das & Yuval Ronen & Moty Heiblum & Diana Mahalu & Andrey V Kretinin & Hadas Shtrikman, 2012. "High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    3. Eva Liebhaber & Lisa M. Rütten & Gaël Reecht & Jacob F. Steiner & Sebastian Rohlf & Kai Rossnagel & Felix Oppen & Katharina J. Franke, 2022. "Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. L. Hofstetter & S. Csonka & J. Nygård & C. Schönenberger, 2009. "Cooper pair splitter realized in a two-quantum-dot Y-junction," Nature, Nature, vol. 461(7266), pages 960-963, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingzhen Wang & Sebastiaan L. D. Haaf & Ivan Kulesh & Di Xiao & Candice Thomas & Michael J. Manfra & Srijit Goswami, 2023. "Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Lucas Schneider & Philip Beck & Levente Rózsa & Thore Posske & Jens Wiebe & Roland Wiesendanger, 2023. "Probing the topologically trivial nature of end states in antiferromagnetic atomic chains on superconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Antti Ranni & Fredrik Brange & Elsa T. Mannila & Christian Flindt & Ville F. Maisi, 2021. "Real-time observation of Cooper pair splitting showing strong non-local correlations," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Bhupendra Kumar & Sachin Verma & Tanuj Chamoli & Ajay, 2023. "Josephson transport across T-shaped and series-configured double quantum dots system at infinite- $$\textit{U}$$ U limit," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-13, December.
    6. Dāgs Olšteins & Gunjan Nagda & Damon J. Carrad & Daria V. Beznasyuk & Christian E. N. Petersen & Sara Martí-Sánchez & Jordi Arbiol & Thomas S. Jespersen, 2023. "Cryogenic multiplexing using selective area grown nanowires," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58645-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.