IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58621-9.html
   My bibliography  Save this article

Separate brainstem circuits for fast steering and slow exploratory turns

Author

Listed:
  • Lulu Xu

    (Tongji University
    Tongji University)

  • Bing Zhu

    (Tongji University
    Tongji University)

  • Zhiqiang Zhu

    (Tongji University
    Tongji University)

  • Xingyu Tao

    (Tongji University
    Tongji University)

  • Tianrui Zhang

    (Tongji University
    Tongji University)

  • Abdeljabbar El Manira

    (Karolinska Institute)

  • Jianren Song

    (Tongji University
    Tongji University
    Karolinska Institute)

Abstract

Locomotion requires precise tuning of descending commands to scale turning movements, such as rapid steering during prey pursuit or shallow turns during exploration. We show that these two turn types are governed by distinct brainstem circuits. The rapid steering circuit involves excitatory V2a and inhibitory commissural V0d neurons, distributed across different brainstem nuclei. These neurons are coupled via gap junctions and activated simultaneously, ensuring rapid steering through asymmetrical activation of spinal motor neurons. The recruitment of this circuit correlates more with the degree of direction change than with locomotor frequency. Steering neurons are, in turn, controlled by a subset of V2a neurons in the pretectum, activated by salient visual input. In contrast, slow exploratory turns are governed by a separate set of V2a neurons confined to fewer brainstem nuclei. These findings reveal a modular organization of brainstem circuits that selectively control rapid steering and slow exploratory turning during locomotion.

Suggested Citation

  • Lulu Xu & Bing Zhu & Zhiqiang Zhu & Xingyu Tao & Tianrui Zhang & Abdeljabbar El Manira & Jianren Song, 2025. "Separate brainstem circuits for fast steering and slow exploratory turns," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58621-9
    DOI: 10.1038/s41467-025-58621-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58621-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58621-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David L. McLean & Jingyi Fan & Shin-ichi Higashijima & Melina E. Hale & Joseph R. Fetcho, 2007. "A topographic map of recruitment in spinal cord," Nature, Nature, vol. 446(7131), pages 71-75, March.
    2. Jianren Song & Elin Dahlberg & Abdeljabbar El Manira, 2018. "V2a interneuron diversity tailors spinal circuit organization to control the vigor of locomotor movements," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    3. Jianren Song & Konstantinos Ampatzis & E. Rebecka Björnfors & Abdeljabbar El Manira, 2016. "Motor neurons control locomotor circuit function retrogradely via gap junctions," Nature, Nature, vol. 529(7586), pages 399-402, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhikai Liu & David G. C. Hildebrand & Joshua L. Morgan & Yizhen Jia & Nicholas Slimmon & Martha W. Bagnall, 2022. "Organization of the gravity-sensing system in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Li-Ju Hsu & Maëlle Bertho & Ole Kiehn, 2023. "Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Mir Ahsan Ali & Katharina Lischka & Stephanie J. Preuss & Chintan A. Trivedi & Johann H. Bollmann, 2023. "A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Kai Zhou & Wei Wei & Dan Yang & Hui Zhang & Wei Yang & Yunpeng Zhang & Yingnan Nie & Mingming Hao & Pengcheng Wang & Hang Ruan & Ting Zhang & Shouyan Wang & Yaobo Liu, 2024. "Dual electrical stimulation at spinal-muscular interface reconstructs spinal sensorimotor circuits after spinal cord injury," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    5. Song, Zigen & Ji, Fengchao & Xu, Jian, 2024. "Is there a user-friendly building unit to replicate rhythmic patterns of CPG systems? Synchrony transition and application of the delayed bursting-HCO model," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Andrea Pedroni & Yu-Wen E. Dai & Leslie Lafouasse & Weipang Chang & Ipsit Srivastava & Lisa Vecchio & Konstantinos Ampatzis, 2024. "Neuroprotective gap-junction-mediated bystander transformations in the adult zebrafish spinal cord after injury," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Chun-Xiao Huang & Yacong Zhao & Jie Mao & Zhen Wang & Lulu Xu & Jianwei Cheng & Na N. Guan & Jianren Song, 2021. "An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58621-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.