IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58585-w.html
   My bibliography  Save this article

GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau

Author

Listed:
  • Diana Acosta Ingram

    (The Ohio State University)

  • Emir Turkes

    (UCL Queen Square Institute of Neurology)

  • Tae Yeon Kim

    (The Ohio State University
    The Ohio State University)

  • Sheeny Vo

    (The Ohio State University)

  • Nicholas Sweeney

    (The Ohio State University)

  • Marie-Amandine Bonte

    (The Ohio State University)

  • Ryan Rutherford

    (Abigail Wexner Research Institute at Nationwide Children’s Hospital)

  • Dominic L. Julian

    (Abigail Wexner Research Institute at Nationwide Children’s Hospital)

  • Meixia Pan

    (University of Texas Health Science Center at San Antonio)

  • Jacob Marsh

    (Washington University School of Medicine)

  • Andrea R. Argouarch

    (University of California)

  • Min Wu

    (The Ohio State University)

  • Douglas W. Scharre

    (The Ohio State University)

  • Erica H. Bell

    (The Ohio State University)

  • Lawrence S. Honig

    (Columbia University Irving Medical Center)

  • Jean Paul Vonsattel

    (Columbia University Irving Medical Center)

  • Geidy E. Serrano

    (Banner Sun Health Research Institute)

  • Thomas G. Beach

    (Banner Sun Health Research Institute)

  • Celeste M. Karch

    (Washington University School of Medicine)

  • Aimee W. Kao

    (University of California)

  • Mark E. Hester

    (Abigail Wexner Research Institute at Nationwide Children’s Hospital)

  • Xianlin Han

    (University of Texas Health Science Center at San Antonio
    University of Texas Health Science Center at San Antonio)

  • Hongjun Fu

    (The Ohio State University
    The Ohio State University)

Abstract

Lipid dyshomeostasis and tau pathology are present in frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD). However, the relationship between lipid dyshomeostasis and tau pathology remains unclear. We report that GRAM Domain Containing 1B (GRAMD1B), a nonvesicular cholesterol transporter, is increased in excitatory neurons of human neural organoids (HNOs) with the MAPT R406W mutation. Human FTLD, AD cases, and PS19 tau mice also have increased GRAMD1B expression. We show that overexpression of GRAMD1B increases levels of free cholesterol, lipid droplets, and impairs autophagy flux. Modulating GRAMD1B in iPSC-derived neurons also alters key autophagy-related components such as PI3K, phospho-AKT, and p62, as well as phosphorylated tau, and CDK5R1. Blocking GRAMD1B function decreases free cholesterol and lipid droplets. Knocking down GRAMD1B additionally reduces phosphorylated tau, and CDK5R1 expression. Our findings elucidate the role of GRAMD1B in the nervous system and highlight its relevance to FTLD and AD.

Suggested Citation

  • Diana Acosta Ingram & Emir Turkes & Tae Yeon Kim & Sheeny Vo & Nicholas Sweeney & Marie-Amandine Bonte & Ryan Rutherford & Dominic L. Julian & Meixia Pan & Jacob Marsh & Andrea R. Argouarch & Min Wu &, 2025. "GRAMD1B is a regulator of lipid homeostasis, autophagic flux and phosphorylated tau," Nature Communications, Nature, vol. 16(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58585-w
    DOI: 10.1038/s41467-025-58585-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58585-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58585-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aparna Bhaduri & Madeline G. Andrews & Walter Mancia Leon & Diane Jung & David Shin & Denise Allen & Dana Jung & Galina Schmunk & Maximilian Haeussler & Jahan Salma & Alex A. Pollen & Tomasz J. Nowako, 2020. "Cell stress in cortical organoids impairs molecular subtype specification," Nature, Nature, vol. 578(7793), pages 142-148, February.
    2. Bilal Cakir & Yoshiaki Tanaka & Ferdi Ridvan Kiral & Yangfei Xiang & Onur Dagliyan & Juan Wang & Maria Lee & Allison M. Greaney & Woo Sub Yang & Catherine duBoulay & Mehmet Hamdi Kural & Benjamin Patt, 2022. "Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Jing Zhao & Yuan Fu & Yu Yamazaki & Yingxue Ren & Mary D. Davis & Chia-Chen Liu & Wenyan Lu & Xue Wang & Kai Chen & Yesesri Cherukuri & Lin Jia & Yuka A. Martens & Lucy Job & Francis Shue & Thanh Than, 2020. "APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Hansruedi Mathys & Jose Davila-Velderrain & Zhuyu Peng & Fan Gao & Shahin Mohammadi & Jennie Z. Young & Madhvi Menon & Liang He & Fatema Abdurrob & Xueqiao Jiang & Anthony J. Martorell & Richard M. Ra, 2019. "Single-cell transcriptomic analysis of Alzheimer’s disease," Nature, Nature, vol. 570(7761), pages 332-337, June.
    5. Hansruedi Mathys & Jose Davila-Velderrain & Zhuyu Peng & Fan Gao & Shahin Mohammadi & Jennie Z. Young & Madhvi Menon & Liang He & Fatema Abdurrob & Xueqiao Jiang & Anthony J. Martorell & Richard M. Ra, 2019. "Author Correction: Single-cell transcriptomic analysis of Alzheimer’s disease," Nature, Nature, vol. 571(7763), pages 1-1, July.
    6. Dong Shin Park & Tatsuya Kozaki & Satish Kumar Tiwari & Marco Moreira & Ahad Khalilnezhad & Federico Torta & Nicolas Olivié & Chung Hwee Thiam & Oniko Liani & Aymeric Silvin & Wint Wint Phoo & Liang G, 2023. "iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer," Nature, Nature, vol. 623(7986), pages 397-405, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah Drew Rickner & Lulu Jiang & Rui Hong & Nicholas K. O’Neill & Chromewell A. Mojica & Benjamin J. Snyder & Lushuang Zhang & Dipan Shaw & Maria Medalla & Benjamin Wolozin & Christine S. Cheng, 2022. "Single cell transcriptomic profiling of a neuron-astrocyte assembloid tauopathy model," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jingtao Wang & Gregory J. Fonseca & Jun Ding, 2024. "scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    5. Hyun-Sik Yang & Ling Teng & Daniel Kang & Vilas Menon & Tian Ge & Hilary K. Finucane & Aaron P. Schultz & Michael Properzi & Hans-Ulrich Klein & Lori B. Chibnik & Julie A. Schneider & David A. Bennett, 2023. "Cell-type-specific Alzheimer’s disease polygenic risk scores are associated with distinct disease processes in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Haven Tillmon & Breeanne M. Soteros & Liang Shen & Qifei Cong & Mackenna Wollet & Julianne General & Hanna Chin & John Beichen Lee & Flavia R. Carreno & David A. Morilak & Jun Hee Kim & Gek Ming Sia, 2024. "Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Zoeb Jiwaji & Sachin S. Tiwari & Rolando X. Avilés-Reyes & Monique Hooley & David Hampton & Megan Torvell & Delinda A. Johnson & Jamie McQueen & Paul Baxter & Kayalvizhi Sabari-Sankar & Jing Qiu & Xin, 2022. "Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    8. Ricardo Martins-Ferreira & Josep Calafell-Segura & Bárbara Leal & Javier Rodríguez-Ubreva & Elena Martínez-Saez & Elisabetta Mereu & Paulo Pinho E Costa & Ariadna Laguna & Esteban Ballestar, 2025. "The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    9. Zu-Qiang Liu & Hao Dai & Lu Yao & Wei-Feng Chen & Yun Wang & Li-Yun Ma & Xiao-Qing Li & Sheng-Li Lin & Meng-Jiang He & Ping-Ting Gao & Xin-Yang Liu & Jia-Xin Xu & Xiao-Yue Xu & Ke-Hao Wang & Li Wang &, 2023. "A single-cell transcriptional landscape of immune cells shows disease-specific changes of T cell and macrophage populations in human achalasia," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Nicola A. Kearns & Artemis Iatrou & Daniel J. Flood & Sashini Tissera & Zachary M. Mullaney & Jishu Xu & Chris Gaiteri & David A. Bennett & Yanling Wang, 2023. "Dissecting the human leptomeninges at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. BaDoi N. Phan & Madelyn H. Ray & Xiangning Xue & Chen Fu & Robert J. Fenster & Stephen J. Kohut & Jack Bergman & Suzanne N. Haber & Kenneth M. McCullough & Madeline K. Fish & Jill R. Glausier & Qiao S, 2024. "Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Harris E. Blankenship & Kelsey A. Carter & Kevin D. Pham & Nina T. Cassidy & Andrea N. Markiewicz & Michael I. Thellmann & Amanda L. Sharpe & Willard M. Freeman & Michael J. Beckstead, 2024. "VTA dopamine neurons are hyperexcitable in 3xTg-AD mice due to casein kinase 2-dependent SK channel dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Cankun Wang & Diana Acosta & Megan McNutt & Jiang Bian & Anjun Ma & Hongjun Fu & Qin Ma, 2024. "A single-cell and spatial RNA-seq database for Alzheimer’s disease (ssREAD)," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Osama Al-Dalahmah & Michael G. Argenziano & Adithya Kannan & Aayushi Mahajan & Julia Furnari & Fahad Paryani & Deborah Boyett & Akshay Save & Nelson Humala & Fatima Khan & Juncheng Li & Hong Lu & Yu S, 2023. "Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Malosree Maitra & Haruka Mitsuhashi & Reza Rahimian & Anjali Chawla & Jennie Yang & Laura M. Fiori & Maria Antonietta Davoli & Kelly Perlman & Zahia Aouabed & Deborah C. Mash & Matthew Suderman & Nagu, 2023. "Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Juan F. Quintana & Praveena Chandrasegaran & Matthew C. Sinton & Emma M. Briggs & Thomas D. Otto & Rhiannon Heslop & Calum Bentley-Abbot & Colin Loney & Luis de Lecea & Neil A. Mabbott & Annette MacLe, 2022. "Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Shinya Tasaki & Jishu Xu & Denis R. Avey & Lynnaun Johnson & Vladislav A. Petyuk & Robert J. Dawe & David A. Bennett & Yanling Wang & Chris Gaiteri, 2022. "Inferring protein expression changes from mRNA in Alzheimer’s dementia using deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58585-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.