IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58485-z.html
   My bibliography  Save this article

Far-red fluorescent genetically encoded calcium ion indicators

Author

Listed:
  • Rochelin Dalangin

    (University of Alberta
    Centre de recherche CERVO)

  • Bill Z. Jia

    (Harvard University
    Harvard Medical School)

  • Yitong Qi

    (Harvard University)

  • Abhi Aggarwal

    (Howard Hughes Medical Institute
    and Hotchkiss Brain Institute)

  • Kenryo Sakoi

    (The University of Tokyo)

  • Mikhail Drobizhev

    (Montana State University
    Montana State University)

  • Rosana S. Molina

    (Montana State University)

  • Ronak Patel

    (Howard Hughes Medical Institute)

  • Ahmed S. Abdelfattah

    (Howard Hughes Medical Institute
    Brown University)

  • Jihong Zheng

    (Howard Hughes Medical Institute)

  • Daniel Reep

    (Howard Hughes Medical Institute)

  • Jeremy P. Hasseman

    (Howard Hughes Medical Institute)

  • Yufeng Zhao

    (University of Alberta
    University of Toronto)

  • Jiahui Wu

    (University of Alberta
    University of Massachusetts)

  • Kaspar Podgorski

    (Howard Hughes Medical Institute
    Allen Institute for Neural Dynamics)

  • Alison G. Tebo

    (Howard Hughes Medical Institute)

  • Eric R. Schreiter

    (Howard Hughes Medical Institute)

  • Thomas E. Hughes

    (Montana State University
    Montana Molecular)

  • Takuya Terai

    (The University of Tokyo)

  • Marie-Eve Paquet

    (Centre de recherche CERVO
    Université Laval
    Université Laval)

  • Sean G. Megason

    (Harvard Medical School)

  • Adam E. Cohen

    (Harvard University)

  • Yi Shen

    (University of Alberta)

  • Robert E. Campbell

    (University of Alberta
    Centre de recherche CERVO
    The University of Tokyo
    Université Laval)

Abstract

Genetically encoded calcium ion (Ca2+) indicators (GECIs) are widely-used molecular tools for functional imaging of Ca2+ dynamics and neuronal activities with single-cell resolution. Here we report the design and development of two far-red fluorescent GECIs, FR-GECO1a and FR-GECO1c, based on the monomeric far-red fluorescent proteins mKelly1 and mKelly2. FR-GECOs have excitation and emission maxima at ~596 nm and ~644 nm, respectively, display large responses to Ca2+ in vitro (ΔF/F0 = 6 for FR-GECO1a, 18 for FR-GECO1c), are bright under both one-photon and two-photon illumination, and have high affinities (apparent Kd = 29 nM for FR-GECO1a, 83 nM for FR-GECO1c) for Ca2+. FR-GECOs offer sensitive and fast detection of single action potentials in neurons, and enable in vivo all-optical manipulation and measurement of cellular activities in combination with optogenetic actuators.

Suggested Citation

  • Rochelin Dalangin & Bill Z. Jia & Yitong Qi & Abhi Aggarwal & Kenryo Sakoi & Mikhail Drobizhev & Rosana S. Molina & Ronak Patel & Ahmed S. Abdelfattah & Jihong Zheng & Daniel Reep & Jeremy P. Hasseman, 2025. "Far-red fluorescent genetically encoded calcium ion indicators," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58485-z
    DOI: 10.1038/s41467-025-58485-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58485-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58485-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Zhang & Márton Rózsa & Yajie Liang & Daniel Bushey & Ziqiang Wei & Jihong Zheng & Daniel Reep & Gerard Joey Broussard & Arthur Tsang & Getahun Tsegaye & Sujatha Narayan & Christopher J. Obara & Ji, 2023. "Fast and sensitive GCaMP calcium indicators for imaging neural populations," Nature, Nature, vol. 615(7954), pages 884-891, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie A. Labouesse & Arturo Torres-Herraez & Muhammad O. Chohan & Joseph M. Villarin & Julia Greenwald & Xiaoxiao Sun & Mysarah Zahran & Alice Tang & Sherry Lam & Jeremy Veenstra-VanderWeele & Clay O., 2023. "A non-canonical striatopallidal Go pathway that supports motor control," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Thanh-an Pham & Aleix Boquet-Pujadas & Sandip Mondal & Michael Unser & George Barbastathis, 2024. "Deep-prior ODEs augment fluorescence imaging with chemical sensors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jihwan Lee & Shujuan Lai & Shuyuan Yang & Shiqun Zhao & Francisco A. Blanco & Anne C. Lyons & Raquel Merino-Urteaga & John F. Ahrens & Nathan A. Nguyen & Haixin Liu & Zhuohe Liu & Gerard G. Lambert & , 2025. "Bright and photostable yellow fluorescent proteins for extended imaging," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Caio Vaz Rimoli & Claudio Moretti & Fernando Soldevila & Enora Brémont & Cathie Ventalon & Sylvain Gigan, 2024. "Demixing fluorescence time traces transmitted by multimode fibers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Frederic Fiore & Khaleel Alhalaseh & Ram R. Dereddi & Felipe Bodaleo Torres & Ilknur Çoban & Ali Harb & Amit Agarwal, 2023. "Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    7. Yusuke Nasu & Abhi Aggarwal & Giang N. T. Le & Camilla Trang Vo & Yuki Kambe & Xinxing Wang & Felix R. M. Beinlich & Ashley Bomin Lee & Tina R. Ram & Fangying Wang & Kelsea A. Gorzo & Yuki Kamijo & Ma, 2023. "Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Natalia V. Barykina & Erin M. Carey & Olena S. Oliinyk & Axel Nimmerjahn & Vladislav V. Verkhusha, 2024. "Destabilized near-infrared fluorescent nanobodies enable background-free targeting of GFP-based biosensors for imaging and manipulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Yuting Li & Zongyue Cheng & Chenmao Wang & Jianian Lin & Hehai Jiang & Meng Cui, 2024. "Geometric transformation adaptive optics (GTAO) for volumetric deep brain imaging through gradient-index lenses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Eiji Shigetomi & Hideaki Suzuki & Yukiho J. Hirayama & Fumikazu Sano & Yuki Nagai & Kohei Yoshihara & Keisuke Koga & Toru Tateoka & Hideyuki Yoshioka & Youichi Shinozaki & Hiroyuki Kinouchi & Kenji F., 2024. "Disease-relevant upregulation of P2Y1 receptor in astrocytes enhances neuronal excitability via IGFBP2," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Camille Mazo & Margarida Baeta & Leopoldo Petreanu, 2024. "Auditory cortex conveys non-topographic sound localization signals to visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58485-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.