IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58450-w.html
   My bibliography  Save this article

Generation of induced alveolar assembloids with functional alveolar-like macrophages

Author

Listed:
  • Ji Su Kang

    (Korea Research Institute of Bioscience and Biotechnology (KRIBB)
    University of Science and Technology (UST))

  • Youngsun Lee

    (Korea National Institute of Health)

  • Youngsun Lee

    (Korea Research Institute of Bioscience and Biotechnology (KRIBB)
    University of Science and Technology (UST))

  • Dayeon Gil

    (Korea National Institute of Health)

  • Min Jung Kim

    (Korea National Institute of Health)

  • Connor Wood

    (Institute Pasteur Korea)

  • Vincent Delorme

    (Institute Pasteur Korea)

  • Jeong Mi Lee

    (Korea Research Institute of Bioscience and Biotechnology (KRIBB)
    University of Science and Technology (UST))

  • Kyong-Cheol Ko

    (Korea Research Institute of Bioscience and Biotechnology (KRIBB))

  • Jung-Hyun Kim

    (Korea National Institute of Health
    Ajou University
    Ajou University)

  • Mi-Ok Lee

    (Korea Research Institute of Bioscience and Biotechnology (KRIBB)
    University of Science and Technology (UST))

Abstract

Within the human lung, interactions between alveolar epithelial cells and resident macrophages shape lung development and function in both health and disease. To study these processes, we develop a co-culture system combining human pluripotent stem cell-derived alveolar epithelial organoids and induced macrophages to create a functional environment, termed induced alveolar assembloids. Using single-cell RNA sequencing and functional analyses, we identify alveolar type 2-like cells producing GM-CSF, which supports macrophage tissue adaptation, and macrophage-like cells that secrete interleukin-1β and interleukin-6, express surfactant metabolism genes, and demonstrate core immune functions. In response to alveolar epithelial injury, macrophage-like cells efficiently eliminate damaged cells and absorb oxidized lipids. Exposure to bacterial components or infection with Mycobacterium tuberculosis reveals that these assembloids replicate key aspects of human respiratory defense. These findings highlight the potential of induced alveolar assembloids as a platform to investigate human lung development, immunity, and disease.

Suggested Citation

  • Ji Su Kang & Youngsun Lee & Youngsun Lee & Dayeon Gil & Min Jung Kim & Connor Wood & Vincent Delorme & Jeong Mi Lee & Kyong-Cheol Ko & Jung-Hyun Kim & Mi-Ok Lee, 2025. "Generation of induced alveolar assembloids with functional alveolar-like macrophages," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58450-w
    DOI: 10.1038/s41467-025-58450-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58450-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58450-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyle J. Travaglini & Ahmad N. Nabhan & Lolita Penland & Rahul Sinha & Astrid Gillich & Rene V. Sit & Stephen Chang & Stephanie D. Conley & Yasuo Mori & Jun Seita & Gerald J. Berry & Joseph B. Shrager , 2020. "A molecular cell atlas of the human lung from single-cell RNA sequencing," Nature, Nature, vol. 587(7835), pages 619-625, November.
    2. Yuefan Huang & Vakul Mohanty & Merve Dede & Kyle Tsai & May Daher & Li Li & Katayoun Rezvani & Ken Chen, 2023. "Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Zhang & Sai Ma & Zhengzhi Liu & Bohan Zhu & Zirui Zhou & Gaoshan Li & J. Javier Meana & Javier González-Maeso & Chang Lu, 2023. "Droplet-based bisulfite sequencing for high-throughput profiling of single-cell DNA methylomes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Agnieska Brazovskaja & Tomás Gomes & Rene Holtackers & Philipp Wahle & Christiane Körner & Zhisong He & Theresa Schaffer & Julian Connor Eckel & René Hänsel & Malgorzata Santel & Makiko Seimiya & Timm, 2024. "Cell atlas of the regenerating human liver after portal vein embolization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Yuma Takano & Jun Suzuki & Kotaro Nomura & Gento Fujii & Junko Zenkoh & Hitomi Kawai & Yuta Kuze & Yukie Kashima & Satoi Nagasawa & Yuka Nakamura & Motohiro Kojima & Katsuya Tsuchihara & Masahide Seki, 2024. "Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Nathanial C. Stevens & Tong Shen & Joshua Martinez & Veneese J. B. Evans & Morgan C. Domanico & Elizabeth K. Neumann & Laura S. Winkle & Oliver Fiehn, 2025. "Resolving multi-image spatial lipidomic responses to inhaled toxicants by machine learning," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Hongru Hu & Gerald Quon, 2024. "scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Shixuan Liu & Camille Ezran & Michael F. Z. Wang & Zhengda Li & Kyle Awayan & Jonathan Z. Long & Iwijn De Vlaminck & Sheng Wang & Jacques Epelbaum & Christin S. Kuo & Jérémy Terrien & Mark A. Krasnow , 2024. "An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    9. Zhoufeng Wang & Zhe Li & Kun Zhou & Chengdi Wang & Lili Jiang & Li Zhang & Ying Yang & Wenxin Luo & Wenliang Qiao & Gang Wang & Yinyun Ni & Shuiping Dai & Tingting Guo & Guiyi Ji & Minjie Xu & Yiying , 2021. "Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Christopher J. Hanley & Sara Waise & Matthew J. Ellis & Maria A. Lopez & Wai Y. Pun & Julian Taylor & Rachel Parker & Lucy M. Kimbley & Serena J. Chee & Emily C. Shaw & Jonathan West & Aiman Alzetani , 2023. "Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Eran Mick & Alexandra Tsitsiklis & Natasha Spottiswoode & Saharai Caldera & Paula Hayakawa Serpa & Angela M. Detweiler & Norma Neff & Angela Oliveira Pisco & Lucy M. Li & Hanna Retallack & Kalani Ratn, 2022. "Upper airway gene expression shows a more robust adaptive immune response to SARS-CoV-2 in children," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Xue Gao & Sheng Wang & Yan-Fen Wang & Shuang Li & Shi-Xin Wu & Rong-Ge Yan & Yi-Wen Zhang & Rui-Dong Wan & Zhen He & Ren-De Song & Xin-Quan Zhao & Dong-Dong Wu & Qi-En Yang, 2022. "Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Ronja Mothes & Anna Pascual-Reguant & Ralf Koehler & Juliane Liebeskind & Alina Liebheit & Sandy Bauherr & Lars Philipsen & Carsten Dittmayer & Michael Laue & Regina Manitius & Sefer Elezkurtaj & Pawe, 2023. "Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Yu Zhao & Yueqing Zhou & Weipan Zhang & Mingzhe Liu & Jun Duan & Xiaopeng Zhang & Qiwang Ma & Yujia Wang & Yuzhen Zhang & Zhongliang Guo & Ting Zhang & Wei Zuo, 2025. "Cloned airway basal progenitor cells to repair fibrotic lung through re-epithelialization," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    15. Mayra Cruz Tleugabulova & Sandra P. Melo & Aaron Wong & Alexander Arlantico & Meizi Liu & Joshua D. Webster & Julia Lau & Antonie Lechner & Basak Corak & Jonathan J. Hodgins & Venkata S. Garlapati & M, 2024. "Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Igor O. Shmarakov & Galina A. Gusarova & Mohammad N. Islam & María Marhuenda-Muñoz & Jahar Bhattacharya & William S. Blaner, 2023. "Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    17. Qizhou Lian & Kui Zhang & Zhao Zhang & Fuyu Duan & Liyan Guo & Weiren Luo & Bobo Wing-Yee Mok & Abhimanyu Thakur & Xiaoshan Ke & Pedram Motallebnejad & Vlad Nicolaescu & Jonathan Chen & Chui Yan Ma & , 2022. "Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Melanie Weigert & Yan Li & Lisha Zhu & Heather Eckart & Preety Bajwa & Rahul Krishnan & Sarah Ackroyd & Ricardo Lastra & Agnes Bilecz & Anindita Basu & Ernst Lengyel & Mengjie Chen, 2025. "A cell atlas of the human fallopian tube throughout the menstrual cycle and menopause," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    19. Sarah Figarol & Célia Delahaye & Rémi Gence & Aurélia Doussine & Juan Pablo Cerapio & Mathylda Brachais & Claudine Tardy & Nicolas Béry & Raghda Asslan & Jacques Colinge & Jean-Philippe Villemin & Ant, 2024. "Farnesyltransferase inhibition overcomes oncogene-addicted non-small cell lung cancer adaptive resistance to targeted therapies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Komal Kumar Bollepogu Raja & Kelvin Yeung & Yoon-Kyung Shim & Yumei Li & Rui Chen & Graeme Mardon, 2023. "A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58450-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.