IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58360-x.html
   My bibliography  Save this article

Kupffer cell and recruited macrophage heterogeneity orchestrate granuloma maturation and hepatic immunity in visceral leishmaniasis

Author

Listed:
  • Gabriela Pessenda

    (National Institutes of Health)

  • Tiago R. Ferreira

    (National Institutes of Health)

  • Andrea Paun

    (National Institutes of Health)

  • Juraj Kabat

    (National Institutes of Health)

  • Eduardo P. Amaral

    (National Institutes of Health
    National Institutes of Health)

  • Olena Kamenyeva

    (National Institutes of Health)

  • Pedro Henrique Gazzinelli-Guimaraes

    (National Institutes of Health
    Immunology & Tropical Medicine School of Medicine & Health Sciences. The George Washington University)

  • Shehan R. Perera

    (The Ohio State University)

  • Sundar Ganesan

    (National Institutes of Health)

  • Sang Hun Lee

    (National Institutes of Health)

  • David L. Sacks

    (National Institutes of Health)

Abstract

In murine models of visceral leishmaniasis (VL), the parasitization of resident Kupffer cells (resKCs) drives early Leishmania infantum growth in the liver, leading to granuloma formation and subsequent parasite control. Using the chronic VL model, we demonstrate that polyclonal resKCs redistributed to form granulomas outside the sinusoids, creating an open sinusoidal niche that was gradually repopulated by monocyte-derived KCs (moKCs) acquiring a tissue specific, homeostatic profile. Early-stage granulomas predominantly consisted of CLEC4F+KCs. In contrast, late-stage granulomas led to remodeling of the sinusoidal network and contained monocyte-derived macrophages (momacs) along with KCs that downregulated CLEC4F, with both populations expressing iNOS and pro-inflammatory chemokines. During late-stage infection, parasites were largely confined to CLEC4F-KCs. Reduced monocyte recruitment and increased resKCs proliferation in infected Ccr2−/− mice impaired parasite control. These findings show that the ontogenic heterogeneity of granuloma macrophages is closely linked to granuloma maturation and the development of hepatic immunity in VL.

Suggested Citation

  • Gabriela Pessenda & Tiago R. Ferreira & Andrea Paun & Juraj Kabat & Eduardo P. Amaral & Olena Kamenyeva & Pedro Henrique Gazzinelli-Guimaraes & Shehan R. Perera & Sundar Ganesan & Sang Hun Lee & David, 2025. "Kupffer cell and recruited macrophage heterogeneity orchestrate granuloma maturation and hepatic immunity in visceral leishmaniasis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58360-x
    DOI: 10.1038/s41467-025-58360-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58360-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58360-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elisa Gomez Perdiguero & Kay Klapproth & Christian Schulz & Katrin Busch & Emanuele Azzoni & Lucile Crozet & Hannah Garner & Celine Trouillet & Marella F. de Bruijn & Frederic Geissmann & Hans-Reimer , 2015. "Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors," Nature, Nature, vol. 518(7540), pages 547-551, February.
    2. Sang Hun Lee & Byunghyun Kang & Olena Kamenyeva & Tiago Rodrigues Ferreira & Kyoungin Cho & Jaspal S. Khillan & Juraj Kabat & Brian L. Kelsall & David L. Sacks, 2023. "Dermis resident macrophages orchestrate localized ILC2 eosinophil circuitries to promote non-healing cutaneous leishmaniasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Charlotte L. Scott & Fang Zheng & Patrick De Baetselier & Liesbet Martens & Yvan Saeys & Sofie De Prijck & Saskia Lippens & Chloé Abels & Steve Schoonooghe & Geert Raes & Nick Devoogdt & Bart N. Lambr, 2016. "Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Hildebrandt & Alma Andersson & Sami Saarenpää & Ludvig Larsson & Noémi Van Hul & Sachie Kanatani & Jan Masek & Ewa Ellis & Antonio Barragan & Annelie Mollbrink & Emma R. Andersson & Joakim L, 2021. "Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Miki Nagase & Hidetake Kurihara & Atsu Aiba & Morag J Young & Tatsuo Sakai, 2016. "Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-17, March.
    3. Inhye Park & Michael E. Goddard & Jennifer E. Cole & Natacha Zanin & Leo-Pekka Lyytikäinen & Terho Lehtimäki & Evangelos Andreakos & Marc Feldmann & Irina Udalova & Ignat Drozdov & Claudia Monaco, 2022. "C-type lectin receptor CLEC4A2 promotes tissue adaptation of macrophages and protects against atherosclerosis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Liang Yong & Yafen Yu & Bao Li & Huiyao Ge & Qi Zhen & Yiwen Mao & Yanxia Yu & Lu Cao & Ruixue Zhang & Zhuo Li & Yirui Wang & Wencheng Fan & Chang Zhang & Daiyue Wang & Sihan Luo & Yuanming Bai & Shir, 2022. "Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. C. Biben & T. S. Weber & K. S. Potts & J. Choi & D. C. Miles & A. Carmagnac & T. Sargeant & C. A. Graaf & K. A. Fennell & A. Farley & O. J. Stonehouse & M. A. Dawson & D. J. Hilton & S. H. Naik & S. T, 2023. "In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Seiji Taniguchi & Takahiro Matsui & Kenji Kimura & Soichiro Funaki & Yu Miyamoto & Yutaka Uchida & Takao Sudo & Junichi Kikuta & Tetsuya Hara & Daisuke Motooka & Yu-Chen Liu & Daisuke Okuzaki & Eiichi, 2023. "In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Anna E. Williamson & Sanuri Liyanage & Mohammadhossein Hassanshahi & Malathi S. I. Dona & Deborah Toledo-Flores & Dang X. A. Tran & Catherine Dimasi & Nisha Schwarz & Sanuja Fernando & Thalia Salagara, 2024. "Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Lauriane Galle-Treger & Doumet Georges Helou & Christine Quach & Emily Howard & Benjamin P. Hurrell & German R. Aleman Muench & Pedram Shafiei-Jahani & Jacob D. Painter & Andrea Iorga & Lily Dara & Ju, 2022. "Autophagy impairment in liver CD11c+ cells promotes non-alcoholic fatty liver disease through production of IL-23," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Stacy K. Thomas & Max M. Wattenberg & Shaanti Choi-Bose & Mark Uhlik & Ben Harrison & Heather Coho & Christopher R. Cassella & Meredith L. Stone & Dhruv Patel & Kelly Markowitz & Devora Delman & Micha, 2023. "Kupffer cells prevent pancreatic ductal adenocarcinoma metastasis to the liver in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Rebecca Fima & Sébastien Dussaud & Cheïma Benbida & Margault Blanchet & François Lanthiez & Lucie Poupel & Claudia Brambilla & Adélaïde Gélineau & Mattia Dessena & Marina Blanc & Cédric Lerévérend & M, 2024. "Loss of embryonically-derived Kupffer cells during hypercholesterolemia accelerates atherosclerosis development," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Qizhou Lian & Kui Zhang & Zhao Zhang & Fuyu Duan & Liyan Guo & Weiren Luo & Bobo Wing-Yee Mok & Abhimanyu Thakur & Xiaoshan Ke & Pedram Motallebnejad & Vlad Nicolaescu & Jonathan Chen & Chui Yan Ma & , 2022. "Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Steven Schepanski & Mattia Chini & Veronika Sternemann & Christopher Urbschat & Kristin Thiele & Ting Sun & Yu Zhao & Mareike Poburski & Anna Woestemeier & Marie-Theres Thieme & Dimitra E. Zazara & Ma, 2022. "Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Jake R. Thomas & Anna Appios & Emily F. Calderbank & Nagisa Yoshida & Xiaohui Zhao & Russell S. Hamilton & Ashley Moffett & Andrew Sharkey & Elisa Laurenti & Courtney W. Hanna & Naomi McGovern, 2023. "Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Nourhan Abdelfattah & Parveen Kumar & Caiyi Wang & Jia-Shiun Leu & William F. Flynn & Ruli Gao & David S. Baskin & Kumar Pichumani & Omkar B. Ijare & Stephanie L. Wood & Suzanne Z. Powell & David L. H, 2022. "Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58360-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.