IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58348-7.html
   My bibliography  Save this article

Deciphering the history of ERK activity from fixed-cell immunofluorescence measurements

Author

Listed:
  • Abhineet Ram

    (University of California)

  • Michael Pargett

    (University of California)

  • Yongin Choi

    (University of California)

  • Devan Murphy

    (University of California)

  • Carolyn Teragawa

    (University of California)

  • Markhus Cabel

    (University of California)

  • Nont Kosaisawe

    (University of California)

  • Gerald Quon

    (University of California)

  • John G. Albeck

    (University of California)

Abstract

The RAS/ERK pathway plays a central role in diagnosis and therapy for many cancers. ERK activity is highly dynamic within individual cells and drives cell proliferation, metabolism, and other processes through effector proteins including c-Myc, c-Fos, Fra-1, and Egr-1. These proteins are sensitive to the dynamics of ERK activity, but it is not clear to what extent the pattern of ERK activity in an individual cell determines effector protein expression, or how much information about ERK dynamics is embedded in the pattern of effector expression. Here, we evaluate these relationships using live-cell biosensor measurements of ERK activity, multiplexed with immunofluorescence staining for downstream target proteins of the pathway. Combining these datasets with linear regression, machine learning, and differential equation models, we develop an interpretive framework for immunofluorescence data, wherein Fra-1 and pRb levels imply long-term activation of ERK signaling, while Egr-1 and c-Myc indicate more recent activation. Analysis of multiple cancer cell lines reveals a distorted relationship between ERK activity and cell state in malignant cells. We show that this framework can infer various classes of ERK dynamics from effector protein stains within a heterogeneous population, providing a basis for annotating ERK dynamics within fixed cells.

Suggested Citation

  • Abhineet Ram & Michael Pargett & Yongin Choi & Devan Murphy & Carolyn Teragawa & Markhus Cabel & Nont Kosaisawe & Gerald Quon & John G. Albeck, 2025. "Deciphering the history of ERK activity from fixed-cell immunofluorescence measurements," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58348-7
    DOI: 10.1038/s41467-025-58348-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58348-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58348-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yihan Lin & Chang Ho Sohn & Chiraj K. Dalal & Long Cai & Michael B. Elowitz, 2015. "Combinatorial gene regulation by modulation of relative pulse timing," Nature, Nature, vol. 527(7576), pages 54-58, November.
    2. Gideon Bollag & Peter Hirth & James Tsai & Jiazhong Zhang & Prabha N. Ibrahim & Hanna Cho & Wayne Spevak & Chao Zhang & Ying Zhang & Gaston Habets & Elizabeth A. Burton & Bernice Wong & Garson Tsang &, 2010. "Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma," Nature, Nature, vol. 467(7315), pages 596-599, September.
    3. Chen Yang & Chengzhe Tian & Timothy E. Hoffman & Nicole K. Jacobsen & Sabrina L. Spencer, 2021. "Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasia Samarkina & Markus Kirolos Youssef & Paola Ostano & Soumitra Ghosh & Min Ma & Beatrice Tassone & Tatiana Proust & Giovanna Chiorino & Mitchell P. Levesque & Sandro Goruppi & Gian Paolo Dotto, 2023. "Androgen receptor is a determinant of melanoma targeted drug resistance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. repec:plo:pone00:0058721 is not listed on IDEAS
    3. Gaurav Mendiratta & Eugene Ke & Meraj Aziz & David Liarakos & Melinda Tong & Edward C. Stites, 2021. "Cancer gene mutation frequencies for the U.S. population," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Jiaxin Liang & Deyang Yu & Chi Luo & Christopher Bennett & Mark Jedrychowski & Steve P. Gygi & Hans R. Widlund & Pere Puigserver, 2023. "Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jonathan Desponds & Huy Tran & Teresa Ferraro & Tanguy Lucas & Carmina Perez Romero & Aurelien Guillou & Cecile Fradin & Mathieu Coppey & Nathalie Dostatni & Aleksandra M Walczak, 2016. "Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    6. C Caranica & A Al-Omari & Z Deng & J Griffith & R Nilsen & L Mao & J Arnold & H-B Schüttler, 2018. "Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58348-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.