IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58046-4.html
   My bibliography  Save this article

Refined weathering CO2 budget of the Tibetan Plateau strongly modulated by sulphide oxidation

Author

Listed:
  • Wenjing Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhifang Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huiguo Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Mingyu Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yifu Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhengtang Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Estimation of net CO2 consumption by weathering in orogen is complicated as high erosion rate promotes competing processes of CO2 consumption (silicate weathering) and releasing (sulfuric acid (H2SO4) dissolution of carbonate). Quantification of H2SO4 disturbing on weathering is missing in the Tibetan Plateau, hindering the understanding of Himalayan orogenesis impact on global carbon cycle. Here we calculate the riverine solute contributions from both carbonic and sulfuric acid mediated weathering, and their weathering fluxes with major river geochemistry dataset from the Tibetan Plateau. We find that silicate weathering is not anomalous, while carbonate weathering flux is 2.09% of the global value with 1.01% drainage area. Over 80% H2SO4 originated from pyrite oxidation is consumed by carbonate weathering, which counteracts ~58% of the CO2 consumption flux by silicate weathering. The refined weathering CO2 budget in this work provides quantitative modern evidence for pyrite weathering in orogen serving as negative feedback on atmospheric pCO2.

Suggested Citation

  • Wenjing Liu & Zhifang Xu & Huiguo Sun & Mingyu Zhao & Yifu Xu & Zhengtang Guo, 2025. "Refined weathering CO2 budget of the Tibetan Plateau strongly modulated by sulphide oxidation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58046-4
    DOI: 10.1038/s41467-025-58046-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58046-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58046-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jane K. Willenbring & Friedhelm von Blanckenburg, 2010. "Long-term stability of global erosion rates and weathering during late-Cenozoic cooling," Nature, Nature, vol. 465(7295), pages 211-214, May.
    2. Tandong Yao & Lonnie Thompson & Wei Yang & Wusheng Yu & Yang Gao & Xuejun Guo & Xiaoxin Yang & Keqin Duan & Huabiao Zhao & Baiqing Xu & Jiancheng Pu & Anxin Lu & Yang Xiang & Dambaru B. Kattel & Danie, 2012. "Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings," Nature Climate Change, Nature, vol. 2(9), pages 663-667, September.
    3. Jeremy K. Caves Rugenstein & Daniel E. Ibarra & Friedhelm von Blanckenburg, 2019. "Neogene cooling driven by land surface reactivity rather than increased weathering fluxes," Nature, Nature, vol. 571(7763), pages 99-102, July.
    4. Mark A. Torres & A. Joshua West & Gaojun Li, 2014. "Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales," Nature, Nature, vol. 507(7492), pages 346-349, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Zhang & Mathieu Dellinger & Robert G. Hilton & Jimin Yu & Mark B. Allen & Alexander L. Densmore & Hui Sun & Zhangdong Jin, 2022. "Hydrological control of river and seawater lithium isotopes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kai Deng & Shouye Yang & Yulong Guo, 2022. "A global temperature control of silicate weathering intensity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Junhua Yang & Shichang Kang & Deliang Chen & Lin Zhao & Zhenming Ji & Keqin Duan & Haijun Deng & Lekhendra Tripathee & Wentao Du & Mukesh Rai & Fangping Yan & Yuan Li & Robert R. Gillies, 2022. "South Asian black carbon is threatening the water sustainability of the Asian Water Tower," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    6. Ling-en Wang & Yuxi Zeng & Linsheng Zhong, 2017. "Impact of Climate Change on Tourism on the Qinghai-Tibetan Plateau: Research Based on a Literature Review," Sustainability, MDPI, vol. 9(9), pages 1-14, August.
    7. Yaqun Liu & Changhe Lu, 2021. "Quantifying Grass Coverage Trends to Identify the Hot Plots of Grassland Degradation in the Tibetan Plateau during 2000–2019," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    8. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Bhaskar Shrestha & Qinghua Ye & Nitesh Khadka, 2019. "Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    10. Jiahui Li & Xinliang Xu, 2023. "Glacier Change and Its Response to Climate Change in Western China," Land, MDPI, vol. 12(3), pages 1-13, March.
    11. K. E. Clark & R. F. Stallard & S. F. Murphy & M. A. Scholl & G. González & A. F. Plante & W. H. McDowell, 2022. "Extreme rainstorms drive exceptional organic carbon export from forested humid-tropical rivers in Puerto Rico," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Haiting Gu & Yue-Ping Xu & Li Liu & Jingkai Xie & Lu Wang & Suli Pan & Yuxue Guo, 2023. "Seasonal catchment memory of high mountain rivers in the Tibetan Plateau," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Taigang Zhang & Weicai Wang & Baosheng An & Lele Wei, 2023. "Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments," Energy, Elsevier, vol. 283(C).
    16. Sibo Zeng & Zaihua Liu & Yongjun Jiang & Nico Goldscheider & Yan Yang & Min Zhao & Hailong Sun & Haibo He & Mingyu Shao & Liangxing Shi, 2025. "A greening Earth has reversed the trend of decreasing carbonate weathering under a warming climate," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Yanpu Zhao & Jan R. Wijbrans & Hua Wang & Pieter Z. Vroon & Jianghao Ma & Yanqiong Zhao, 2023. "Chemical Weathering and CO 2 Consumption Inferred from Riverine Water Chemistry in the Xi River Drainage, South China," IJERPH, MDPI, vol. 20(2), pages 1-26, January.
    18. Yuchan Guo & Shuhong Zhang, 2023. "Potential Effects of Methane Metabolic Microbial Communities on the Glacial Methane Budget in the Northwestern Tibetan Plateau," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    19. Xiaowei Lyu & Yong Zhang & Huanhuan Wang & Xin Wang, 2024. "Mass Balance of Maritime Glaciers in the Southeastern Tibetan Plateau during Recent Decades," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    20. Zhenong Jin & Qianlai Zhuang & Jin-Sheng He & Tianxiang Luo & Yue Shi, 2013. "Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based soil physical model and remote sensing data," Climatic Change, Springer, vol. 119(2), pages 435-449, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58046-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.