IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58044-6.html
   My bibliography  Save this article

Comprehensive promotion of iPSC-CM maturation by integrating metabolic medium with nanopatterning and electrostimulation

Author

Listed:
  • Wener Li

    (Technische Universität Dresden)

  • Xiaojing Luo

    (Technische Universität Dresden)

  • Anna Strano

    (Technische Universität Dresden)

  • Shakthi Arun

    (Technische Universität Dresden)

  • Oliver Gamm

    (Technische Universität Dresden)

  • Mareike S. Poetsch

    (Technische Universität Dresden)

  • Marcel Hasse

    (Technische Universität Dresden)

  • Robert-Patrick Steiner

    (Technische Universität Dresden)

  • Konstanze Fischer

    (Technische Universität Dresden)

  • Jessie Pöche

    (Technische Universität Dresden)

  • Ying Ulbricht

    (Technische Universität Dresden)

  • Mathias Lesche

    (Technische Universität Dresden)

  • Giulia Trimaglio

    (University Hospital Dresden
    and German Cancer Research Center)

  • Ali El-Armouche

    (Technische Universität Dresden)

  • Andreas Dahl

    (Technische Universität Dresden)

  • Peter Mirtschink

    (University Hospital Dresden)

  • Kaomei Guan

    (Technische Universität Dresden)

  • Mario Schubert

    (Technische Universität Dresden)

Abstract

The immaturity of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a major limitation for their use in drug screening to identify pro-arrhythmogenic or cardiotoxic molecules. Here, we demonstrate an approach that combines lipid-enriched maturation medium with a high concentration of calcium, nanopatterning of culture surfaces and electrostimulation to generate iPSC-CMs with advanced electrophysiological, structural and metabolic phenotypes. Systematic testing reveals that electrostimulation is the key driver of enhanced mitochondrial development and metabolic maturation and improved electrophysiological properties of iPSC-CMs. Increased calcium concentration strongly promotes electrophysiological maturation, while nanopatterning primarily facilitates sarcomere organisation with minor effect on electrophysiological properties. Transcriptome analysis reveals that activation of HMCES and TFAM targets contributes to mitochondrial development, whereas downregulation of MAPK/PI3K and SRF targets is associated with iPSC-CM polyploidy. These findings provide mechanistic insights into iPSC-CM maturation, paving the way for pharmacological responses that more closely resemble those of adult CMs.

Suggested Citation

  • Wener Li & Xiaojing Luo & Anna Strano & Shakthi Arun & Oliver Gamm & Mareike S. Poetsch & Marcel Hasse & Robert-Patrick Steiner & Konstanze Fischer & Jessie Pöche & Ying Ulbricht & Mathias Lesche & Gi, 2025. "Comprehensive promotion of iPSC-CM maturation by integrating metabolic medium with nanopatterning and electrostimulation," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58044-6
    DOI: 10.1038/s41467-025-58044-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58044-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58044-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shunsuke Funakoshi & Ian Fernandes & Olya Mastikhina & Dan Wilkinson & Thinh Tran & Wahiba Dhahri & Amine Mazine & Donghe Yang & Benjamin Burnett & Jeehoon Lee & Stephanie Protze & Gary D. Bader & Sar, 2021. "Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    2. Yao-Chang Tsan & Samuel J. DePalma & Yan-Ting Zhao & Adela Capilnasiu & Yu-Wei Wu & Brynn Elder & Isabella Panse & Kathryn Ufford & Daniel L. Matera & Sabrina Friedline & Thomas S. O’Leary & Nadab Wub, 2021. "Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Kacey Ronaldson-Bouchard & Stephen P. Ma & Keith Yeager & Timothy Chen & LouJin Song & Dario Sirabella & Kumi Morikawa & Diogo Teles & Masayuki Yazawa & Gordana Vunjak-Novakovic, 2018. "Advanced maturation of human cardiac tissue grown from pluripotent stem cells," Nature, Nature, vol. 556(7700), pages 239-243, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Fernandes & Shunsuke Funakoshi & Homaira Hamidzada & Slava Epelman & Gordon Keller, 2023. "Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Mao Mao & Xiaoli Qu & Yabo Zhang & Bingsong Gu & Chen Li & Rongzhi Liu & Xiao Li & Hui Zhu & Jiankang He & Dichen Li, 2023. "Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Tomoya Sakamoto & Kirill Batmanov & Shibiao Wan & Yuanjun Guo & Ling Lai & Rick B. Vega & Daniel P. Kelly, 2022. "The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Quanxia Lyu & Shu Gong & Jarmon G. Lees & Jialiang Yin & Lim Wei Yap & Anne M. Kong & Qianqian Shi & Runfang Fu & Qiang Zhu & Ash Dyer & Jennifer M. Dyson & Shiang Y. Lim & Wenlong Cheng, 2022. "A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. José M Rivera-Arbeláez & Milica Dostanić & Laura M Windt & Jeroen M Stein & Carla Cofiño-Fabres & Tom Boonen & Maury Wiendels & Albert van den Berg & Loes I Segerink & Christine L Mummery & Pasqualina, 2025. "FORCETRACKER: A versatile tool for standardized assessment of tissue contractile properties in 3D Heart-on-Chip platforms," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
    7. Bas Loo & Simone A. Den & Nuno Araújo-Gomes & Vincent Jong & Rebecca R. Snabel & Maik Schot & José M. Rivera-Arbeláez & Gert Jan C. Veenstra & Robert Passier & Tom Kamperman & Jeroen Leijten, 2023. "Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Gaspard Pardon & Alison S. Vander Roest & Orlando Chirikian & Foster Birnbaum & Henry Lewis & Erica A. Castillo & Robin Wilson & Aleksandra K. Denisin & Cheavar A. Blair & Colin Holbrook & Kassie Kole, 2024. "Tracking single hiPSC-derived cardiomyocyte contractile function using CONTRAX an efficient pipeline for traction force measurement," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Sungjin Min & Suran Kim & Woo-Sup Sim & Yi Sun Choi & Hyebin Joo & Jae-Hyun Park & Su-Jin Lee & Hyeok Kim & Mi Jeong Lee & Inhea Jeong & Baofang Cui & Sung-Hyun Jo & Jin-Ju Kim & Seok Beom Hong & Yeon, 2024. "Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications," Nature Communications, Nature, vol. 15(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58044-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.