IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57969-2.html
   My bibliography  Save this article

Genetically encoding ε-N-methacryllysine into proteins in live cells

Author

Listed:
  • Tian-Yi Zhu

    (Zhejiang University
    Zhejiang University)

  • Shi-Yi Chen

    (Zhejiang University
    Zhejiang University)

  • Mengdi Zhang

    (Zhejiang University
    Zhejiang University)

  • Heyu Li

    (Zhejiang University
    Zhejiang University)

  • Ting Wu

    (Zhejiang University
    Zhejiang University)

  • Emmanuel Ajiboye

    (Wichita State University)

  • Jia Wen Wang

    (Wichita State University)

  • Bi-Kun Jin

    (Zhejiang University
    Zhejiang University)

  • Dan-Dan Liu

    (Zhejiang University
    Zhejiang University)

  • Xintong Zhou

    (Zhejiang University
    Zhejiang University)

  • He Huang

    (Computational Medicine Beijing Co. Ltd.)

  • Xiaobo Wan

    (Computational Medicine Beijing Co. Ltd.)

  • Ke Sun

    (Westlake University)

  • Peilong Lu

    (Westlake University)

  • Yaxin Fu

    (Capital Medical University)

  • Ying Yuan

    (Zhejiang University School of Medicine)

  • Hai Song

    (Zhejiang University
    Zhejiang University)

  • Anna A. Sablina

    (VIB)

  • Chao Tong

    (Zhejiang University
    Zhejiang University)

  • Long Zhang

    (Zhejiang University
    Zhejiang University)

  • Ming Wu

    (Zhejiang University School of Medicine)

  • Haifan Wu

    (Wichita State University)

  • Bing Yang

    (Zhejiang University
    Zhejiang University)

Abstract

Lysine acylation is a ubiquitous post-translational modification (PTM) that plays pivotal roles in various cellular processes, such as transcription, metabolism, protein localization and folding. Thousands of lysine acylation sites have been identified based on advances in antibody enrichment strategies, highly sensitive analysis by mass spectrometry (MS), and bioinformatics. However, only 27 lysine methacrylation (Kmea) sites have been identified exclusively in histone proteins. It is hard to separate, purify and differentiate the Kmea modification from its structural isomer lysine crotonylation (Kcr) using general biochemical approaches. Here, we identify Kmea sites on a non-histone protein, Cyclophillin A (CypA). To investigate the functions of Kmea in CypA, we develop a general genetic code expansion approach to incorporate a non-canonical amino acid (ncAA) ε-N-Methacryllysine (MeaK) into target proteins and identify interacting proteins of methacrylated CypA using affinity-purification MS. We find that Kmea at CypA site 125 regulates cellular redox homeostasis, and HDAC1 is the regulator of Kmea on CypA. Moreover, we discover that genetically encode Kmea can be further methylated to ε-N-methyl-ε-N-methacrylation (Kmemea) in live cells.

Suggested Citation

  • Tian-Yi Zhu & Shi-Yi Chen & Mengdi Zhang & Heyu Li & Ting Wu & Emmanuel Ajiboye & Jia Wen Wang & Bi-Kun Jin & Dan-Dan Liu & Xintong Zhou & He Huang & Xiaobo Wan & Ke Sun & Peilong Lu & Yaxin Fu & Ying, 2025. "Genetically encoding ε-N-methacryllysine into proteins in live cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57969-2
    DOI: 10.1038/s41467-025-57969-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57969-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57969-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di Zhang & Zhanyun Tang & He Huang & Guolin Zhou & Chang Cui & Yejing Weng & Wenchao Liu & Sunjoo Kim & Sangkyu Lee & Mathew Perez-Neut & Jun Ding & Daniel Czyz & Rong Hu & Zhen Ye & Maomao He & Y. Ge, 2019. "Metabolic regulation of gene expression by histone lactylation," Nature, Nature, vol. 574(7779), pages 575-580, October.
    2. William J. Lu-Culligan & Leah J. Connor & Yixuan Xie & Babatunde E. Ekundayo & Brendan T. Rose & Martin Machyna & Andreas P. Pintado-Urbanc & Joshua T. Zimmer & Isaac W. Vock & Natarajan V. Bhanu & Me, 2023. "Acetyl-methyllysine marks chromatin at active transcription start sites," Nature, Nature, vol. 622(7981), pages 173-179, October.
    3. Dan-Dan Liu & Wenlong Ding & Jin-Tao Cheng & Qiushi Wei & Yinuo Lin & Tian-Yi Zhu & Jing Tian & Ke Sun & Long Zhang & Peilong Lu & Fan Yang & Chao Liu & Shibing Tang & Bing Yang, 2024. "Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Bogi Karbech Hansen & Rajat Gupta & Linda Baldus & David Lyon & Takeo Narita & Michael Lammers & Chunaram Choudhary & Brian T. Weinert, 2019. "Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Yiqi Zhao & Yongxu Lu & Samuel Richardson & Meghna Sreekumar & Jonas D. Albarnaz & Geoffrey L. Smith, 2023. "TRIM5α restricts poxviruses and is antagonized by CypA and the viral protein C6," Nature, Nature, vol. 620(7975), pages 873-880, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangshuang Sun & Zhe Xu & Liying He & Yihui Shen & Yuqing Yan & Xubing Lv & Xujing Zhu & Wei Li & Wei-Ya Tian & Yongjun Zheng & Sen Lin & Yadong Sun & Lei Li, 2024. "Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Markus M. Rinschen & Oleg Palygin & Ashraf El-Meanawy & Xavier Domingo-Almenara & Amelia Palermo & Lashodya V. Dissanayake & Daria Golosova & Michael A. Schafroth & Carlos Guijas & Fatih Demir & Johan, 2022. "Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Fjodor Merkuri & Megan Rothstein & Marcos Simoes-Costa, 2024. "Histone lactylation couples cellular metabolism with developmental gene regulatory networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Marlies Cortés & Agnese Brischetto & M. C. Martinez-Campanario & Chiara Ninfali & Verónica Domínguez & Sara Fernández & Raquel Celis & Anna Esteve-Codina & Juan J. Lozano & Julia Sidorova & Gloria Gar, 2023. "Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Tim Liebner & Sinan Kilic & Jonas Walter & Hitoshi Aibara & Takeo Narita & Chunaram Choudhary, 2024. "Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Hang Zhou & Wenjun Wang & Hairong Xu & Yong Liang & Jiyu Ding & Mengjie Lv & Boyang Ren & Hua Peng & Yang-Xin Fu & Mingzhao Zhu, 2024. "Metabolic reprograming mediated by tumor cell-intrinsic type I IFN signaling is required for CD47-SIRPα blockade efficacy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Chang Shao & Shuo Tang & Siqin Yu & Chenguang Liu & Yueyang Zhang & Tianyan Wan & Zimeng He & Qi Yuan & Shihan Wu & Hanqing Zhang & Ning Wan & Mengru Zhan & Ren Xiang Tan & Haiping Hao & Hui Ye & Nanx, 2025. "Genetic code expansion reveals site-specific lactylation in living cells reshapes protein functions," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Hanyang Dong & Jianji Zhang & Hui Zhang & Yue Han & Congcong Lu & Chen Chen & Xiaoxia Tan & Siyu Wang & Xue Bai & Guijin Zhai & Shanshan Tian & Tao Zhang & Zhongyi Cheng & Enmin Li & Liyan Xu & Kai Zh, 2022. "YiaC and CobB regulate lysine lactylation in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Huanhuan Cai & Xueyuan Chen & Yan Liu & Yingbo Chen & Gechang Zhong & Xiaoyu Chen & Shuo Rong & Hao Zeng & Lin Zhang & Zelong Li & Aihua Liao & Xiangtai Zeng & Wei Xiong & Cihang Guo & Yanfang Zhu & K, 2025. "Lactate activates trained immunity by fueling the tricarboxylic acid cycle and regulating histone lactylation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Lianhui Sun & Yuan Zhang & Boyu Yang & Sijun Sun & Pengshan Zhang & Zai Luo & Tingting Feng & Zelin Cui & Ting Zhu & Yuming Li & Zhengjun Qiu & Guangjian Fan & Chen Huang, 2023. "Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Yusuke Nasu & Abhi Aggarwal & Giang N. T. Le & Camilla Trang Vo & Yuki Kambe & Xinxing Wang & Felix R. M. Beinlich & Ashley Bomin Lee & Tina R. Ram & Fangying Wang & Kelsea A. Gorzo & Yuki Kamijo & Ma, 2023. "Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Le Wang & Dandan Li & Fang Yao & Shanshan Feng & Chao Tong & Rongjia Rao & Meiyan Zhong & Xianqiang Wang & Wei Feng & Zhan Hu & Bo Jin & Li Wang & Shengshou Hu & Bingying Zhou, 2025. "Serpina3k lactylation protects from cardiac ischemia reperfusion injury," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    15. Veronica L. Li & Shuke Xiao & Pascal Schlosser & Nora Scherer & Amanda L. Wiggenhorn & Jan Spaas & Alan Sheng-Hwa Tung & Edward D. Karoly & Anna Köttgen & Jonathan Z. Long, 2024. "SLC17A1/3 transporters mediate renal excretion of Lac-Phe in mice and humans," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Zhenzhen Chen & Qiankun He & Tiankun Lu & Jiayi Wu & Gaoli Shi & Luyun He & Hong Zong & Benyu Liu & Pingping Zhu, 2023. "mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Lulu Sun & Sijin Wu & Hui Wang & Tianyu Zhang & Mengyu Zhang & Xuepeng Bai & Xiumei Zhang & Bingqing Li & Cai Zhang & Yan Li & Jun Zhou & Tianliang Li, 2024. "PDCD6 regulates lactate metabolism to modulate LC3-associated phagocytosis and antibacterial defense," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Yu Wang & Jian Fan & Xianbin Meng & Qingyao Shu & Yincui Wu & Guo-Chao Chu & Rong Ji & Yinshan Ye & Xiangwei Wu & Jing Shi & Haiteng Deng & Lei Liu & Yi-Ming Li, 2025. "Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Yanan Wang & Yanfeng Liu & Guoxiu Xiang & Ying Jian & Ziyu Yang & Tianchi Chen & Xiaowei Ma & Na Zhao & Yingxin Dai & Yan Lv & Hua Wang & Lei He & Bisheng Shi & Qian Liu & Yao Liu & Michael Otto & Min, 2024. "Post-translational toxin modification by lactate controls Staphylococcus aureus virulence," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Zhiyong Liu & Xiaowei Luan & Qianglan Lu & Shurong Qin & Fei Zeng & Zhi Li & Bangshun He & Yujun Song, 2025. "Reactive oxygen species responsive nanomotors for gene edited metabolic disruption and immunotherapy," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57969-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.