IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57958-5.html
   My bibliography  Save this article

Pathogenic mutation impairs functional dynamics of Hsp60 in mono- and oligomeric states

Author

Listed:
  • Luca Torielli

    (University of Pavia)

  • Federica Guarra

    (University of Pavia)

  • Hao Shao

    (University of California San Francisco)

  • Jason E. Gestwicki

    (University of California San Francisco)

  • Stefano A. Serapian

    (University of Pavia)

  • Giorgio Colombo

    (University of Pavia)

Abstract

Mitochondrial chaperonin Heat Shock Protein 60 kDa (Hsp60) oversees the correct folding of client proteins in cooperation with Hsp10. Hsp60 monomers M first form 7-meric Single rings (S), which then pair into 14-meric Double rings (D) that accommodate clients in their lumen. Recruitment of 7 Hsp10 molecules per pole yields a sealed 28-meric Football-shaped complex (F). ATP hydrolysis in each Hsp60 unit drives client folding and F disassembly. The V72I mutation in hereditary spastic paraplegia form SPG13 impairs Hsp60 function despite being distant from the active site. We here investigate this impairment with atomistic molecular dynamics (MD) simulations of M, S, D, and F for both WT and mutant Hsp60, considering catalytic aspartates in D and F in different protonation states (even simulating one such state of D post-hydrolysis). Our findings show that—as observed experimentally—V72I rigidifies Hsp60 assemblies, significantly impacting internal dynamics. In monomers, V72I introduces a new allosteric route that bypasses the ATP binding site and affects mechanisms driving reactivity. These insights highlight a multiscale complexity of Hsp60 that could inspire the design of experiments to better understand both its WT and V72I variants.

Suggested Citation

  • Luca Torielli & Federica Guarra & Hao Shao & Jason E. Gestwicki & Stefano A. Serapian & Giorgio Colombo, 2025. "Pathogenic mutation impairs functional dynamics of Hsp60 in mono- and oligomeric states," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57958-5
    DOI: 10.1038/s41467-025-57958-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57958-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57958-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeremy Weaver & Mengqiu Jiang & Andrew Roth & Jason Puchalla & Junjie Zhang & Hays S. Rye, 2017. "GroEL actively stimulates folding of the endogenous substrate protein PepQ," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
    2. Katherine A. Henzler-Wildman & Ming Lei & Vu Thai & S. Jordan Kerns & Martin Karplus & Dorothee Kern, 2007. "A hierarchy of timescales in protein dynamics is linked to enzyme catalysis," Nature, Nature, vol. 450(7171), pages 913-916, December.
    3. F. Pontiggia & D.V. Pachov & M.W. Clarkson & J. Villali & M.F. Hagan & V.S. Pande & D. Kern, 2015. "Free energy landscape of activation in a signalling protein at atomic resolution," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    4. Katherine A. Henzler-Wildman & Vu Thai & Ming Lei & Maria Ott & Magnus Wolf-Watz & Tim Fenn & Ed Pozharski & Mark A. Wilson & Gregory A. Petsko & Martin Karplus & Christian G. Hübner & Dorothee Kern, 2007. "Intrinsic motions along an enzymatic reaction trajectory," Nature, Nature, vol. 450(7171), pages 838-844, December.
    5. repec:plo:pcbi00:1002433 is not listed on IDEAS
    6. Hays S. Rye & Steven G. Burston & Wayne A. Fenton & Joseph M. Beechem & Zhaohui Xu & Paul B. Sigler & Arthur L. Horwich, 1997. "Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL," Nature, Nature, vol. 388(6644), pages 792-798, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pone00:0026936 is not listed on IDEAS
    2. Nicolas Palopoli & Alexander Miguel Monzon & Gustavo Parisi & Maria Silvina Fornasari, 2016. "Addressing the Role of Conformational Diversity in Protein Structure Prediction," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-14, May.
    3. Sean L Seyler & Avishek Kumar & M F Thorpe & Oliver Beckstein, 2015. "Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-37, October.
    4. Michael A Jamros & Leandro C Oliveira & Paul C Whitford & José N Onuchic & Joseph A Adams & Patricia A Jennings, 2012. "Substrate-Specific Reorganization of the Conformational Ensemble of CSK Implicates Novel Modes of Kinase Function," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-8, September.
    5. Dilek Eren & Burak Alakent, 2013. "Frequency Response of a Protein to Local Conformational Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-15, September.
    6. Lars Skjaerven & Barry Grant & Arturo Muga & Knut Teigen & J Andrew McCammon & Nathalie Reuter & Aurora Martinez, 2011. "Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-14, March.
    7. Wei He & Xinming Li & Hongjuan Xue & Yuanyuan Yang & Jun Mencius & Ling Bai & Jiayin Zhang & Jianhe Xu & Bin Wu & Yi Xue & Shu Quan, 2022. "Insights into the client protein release mechanism of the ATP-independent chaperone Spy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Rachel J. Roth Flach & Eliza Bollinger & Allan R. Reyes & Brigitte Laforest & Bethany L. Kormos & Shenping Liu & Matthew R. Reese & Luis A. Martinez Alsina & Leanne Buzon & Yuan Zhang & Bruce Bechle &, 2023. "Small molecule branched-chain ketoacid dehydrogenase kinase (BDK) inhibitors with opposing effects on BDK protein levels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. repec:plo:pone00:0068023 is not listed on IDEAS
    10. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    11. Santiago Esteban-Martín & Robert Bryn Fenwick & Jörgen Ådén & Benjamin Cossins & Carlos W Bertoncini & Victor Guallar & Magnus Wolf-Watz & Xavier Salvatella, 2014. "Correlated Inter-Domain Motions in Adenylate Kinase," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-7, July.
    12. Fabian Bumbak & James B. Bower & Skylar C. Zemmer & Asuka Inoue & Miquel Pons & Juan Carlos Paniagua & Fei Yan & James Ford & Hongwei Wu & Scott A. Robson & Ross A. D. Bathgate & Daniel J. Scott & Pau, 2023. "Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Mitchell Brüderlin & Raphael Böhm & Firas Fadel & Sebastian Hiller & Tilman Schirmer & Badri N. Dubey, 2023. "Structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Kenkre, V.M. & Spendier, K., 2022. "A theory of coalescence of signaling receptor clusters in immune cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    15. Adriana Coricello & Alanya J. Nardone & Antonio Lupia & Carmen Gratteri & Matthijn Vos & Vincent Chaptal & Stefano Alcaro & Wen Zhu & Yuichiro Takagi & Nigel G. J. Richards, 2024. "3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Gregory D Friedland & Nils-Alexander Lakomek & Christian Griesinger & Jens Meiler & Tanja Kortemme, 2009. "A Correspondence Between Solution-State Dynamics of an Individual Protein and the Sequence and Conformational Diversity of its Family," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-16, May.
    17. repec:plo:pcbi00:1000827 is not listed on IDEAS
    18. Ritaban Halder & Daniel A. Nissley & Ian Sitarik & Yang Jiang & Yiyun Rao & Quyen V. Vu & Mai Suan Li & Justin Pritchard & Edward P. O’Brien, 2023. "How soluble misfolded proteins bypass chaperones at the molecular level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. repec:plo:pcbi00:1000295 is not listed on IDEAS
    20. Robert Peach & Alexis Arnaudon & Mauricio Barahona, 2022. "Relative, local and global dimension in complex networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    21. Sebastian L B König & Mélodie Hadzic & Erica Fiorini & Richard Börner & Danny Kowerko & Wolf U Blanckenhorn & Roland K O Sigel, 2013. "BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-17, December.
    22. Nicole Stéphanie Galenkamp & Sarah Zernia & Yulan B. Oppen & Marco Noort & Andreas Milias-Argeitis & Giovanni Maglia, 2024. "Allostery can convert binding free energies into concerted domain motions in enzymes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    23. Xiang Zhang & Jingjing Tang & Lingling Wang & Chuan Wang & Lei Chen & Xinqing Chen & Jieshu Qian & Bingcai Pan, 2024. "Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    24. Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57958-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.