IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57825-3.html
   My bibliography  Save this article

Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes

Author

Listed:
  • David Lund

    (Chalmers University of Technology and University of Gothenburg
    University of Gothenburg)

  • Marcos Parras-Moltó

    (Chalmers University of Technology and University of Gothenburg
    University of Gothenburg)

  • Juan S. Inda-Díaz

    (Chalmers University of Technology and University of Gothenburg
    University of Gothenburg)

  • Stefan Ebmeyer

    (University of Gothenburg
    University of Gothenburg)

  • D. G. Joakim Larsson

    (University of Gothenburg
    University of Gothenburg)

  • Anna Johnning

    (Chalmers University of Technology and University of Gothenburg
    University of Gothenburg
    Fraunhofer-Chalmers Centre)

  • Erik Kristiansson

    (Chalmers University of Technology and University of Gothenburg
    University of Gothenburg)

Abstract

The dissemination of mobile antibiotic resistance genes (ARGs) via horizontal gene transfer is a significant threat to public health globally. The flow of ARGs into and between pathogens, however, remains poorly understood, limiting our ability to develop strategies for managing the antibiotic resistance crisis. Therefore, we aim to identify genetic and ecological factors that are fundamental for successful horizontal ARG transfer. We used a phylogenetic method to identify instances of horizontal ARG transfer in ~1 million bacterial genomes. This data was then integrated with >20,000 metagenomes representing animal, human, soil, water, and wastewater microbiomes to develop random forest models that can reliably predict horizontal ARG transfer between bacteria. Our results suggest that genetic incompatibility, measured as nucleotide composition dissimilarity, negatively influences the likelihood of transfer of ARGs between evolutionarily divergent bacteria. Conversely, environmental co-occurrence increases the likelihood, especially in humans and wastewater, in which several environment-specific dissemination patterns are observed. This study provides data-driven ways to predict the spread of ARGs and provides insights into the mechanisms governing this evolutionary process.

Suggested Citation

  • David Lund & Marcos Parras-Moltó & Juan S. Inda-Díaz & Stefan Ebmeyer & D. G. Joakim Larsson & Anna Johnning & Erik Kristiansson, 2025. "Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57825-3
    DOI: 10.1038/s41467-025-57825-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57825-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57825-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alyssa G. Kent & Albert C. Vill & Qiaojuan Shi & Michael J. Satlin & Ilana Lauren Brito, 2020. "Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Chris S. Smillie & Mark B. Smith & Jonathan Friedman & Otto X. Cordero & Lawrence A. David & Eric J. Alm, 2011. "Ecology drives a global network of gene exchange connecting the human microbiome," Nature, Nature, vol. 480(7376), pages 241-244, December.
    3. Mostafa M. H. Ellabaan & Christian Munck & Andreas Porse & Lejla Imamovic & Morten O. A. Sommer, 2021. "Forecasting the dissemination of antibiotic resistance genes across bacterial genomes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Kihyun Lee & Sebastien Raguideau & Kimmo Sirén & Francesco Asnicar & Fabio Cumbo & Falk Hildebrand & Nicola Segata & Chang-Jun Cha & Christopher Quince, 2023. "Population-level impacts of antibiotic usage on the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Samuel C. Forster & Junyan Liu & Nitin Kumar & Emily L. Gulliver & Jodee A. Gould & Alejandra Escobar-Zepeda & Tapoka Mkandawire & Lindsay J. Pike & Yan Shao & Mark D. Stares & Hilary P. Browne & B. A, 2022. "Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yunyan Zhou & Jingquan Li & Fei Huang & Huashui Ai & Jun Gao & Congying Chen & Lusheng Huang, 2023. "Characterization of the pig lower respiratory tract antibiotic resistome," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Yu-Rong Liu & Marcel G. A. Heijden & Judith Riedo & Carlos Sanz-Lazaro & David J. Eldridge & Felipe Bastida & Eduardo Moreno-Jiménez & Xin-Quan Zhou & Hang-Wei Hu & Ji-Zheng He & José L. Moreno & Seba, 2023. "Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Izabela Wolak & Małgorzata Czatzkowska & Monika Harnisz & Jan Paweł Jastrzębski & Łukasz Paukszto & Paulina Rusanowska & Ewa Felis & Ewa Korzeniewska, 2022. "Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure," Energies, MDPI, vol. 15(5), pages 1-19, March.
    8. Rohan Maddamsetti & Yi Yao & Teng Wang & Junheng Gao & Vincent T. Huang & Grayson S. Hamrick & Hye-In Son & Lingchong You, 2024. "Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Yi-Fei Wang & Yan-Jie Liu & Yan-Mei Fu & Jia-Yang Xu & Tian-Lun Zhang & Hui-Ling Cui & Min Qiao & Matthias C. Rillig & Yong-Guan Zhu & Dong Zhu, 2024. "Microplastic diversity increases the abundance of antibiotic resistance genes in soil," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Alice Risely & Arthur Newbury & Thibault Stalder & Benno I. Simmons & Eva M. Top & Angus Buckling & Dirk Sanders, 2024. "Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Andrew Baldi & Sabine Braat & Mohammed Imrul Hasan & Cavan Bennett & Marilou Barrios & Naomi Jones & Gemma Moir-Meyer & Imadh Abdul Azeez & Stephen Wilcox & Mohammad Saiful Alam Bhuiyan & Ricardo Atai, 2024. "Community use of oral antibiotics transiently reprofiles the intestinal microbiome in young Bangladeshi children," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yuxuan Du & Jed A. Fuhrman & Fengzhu Sun, 2023. "ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Zhenyan Zhang & Qi Zhang & Tingzhang Wang & Nuohan Xu & Tao Lu & Wenjie Hong & Josep Penuelas & Michael Gillings & Meixia Wang & Wenwen Gao & Haifeng Qian, 2022. "Assessment of global health risk of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Wenxiu Wang & Weizhi Song & Marwan E. Majzoub & Xiaoyuan Feng & Bu Xu & Jianchang Tao & Yuanqing Zhu & Zhiyong Li & Pei-Yuan Qian & Nicole S. Webster & Torsten Thomas & Lu Fan, 2024. "Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Paulo Martins Da Costa & Luís Loureiro & Augusto J. F. Matos, 2013. "Transfer of Multidrug-Resistant Bacteria Between Intermingled Ecological Niches: The Interface Between Humans, Animals and the Environment," IJERPH, MDPI, vol. 10(1), pages 1-17, January.
    16. Zi-Teng Liu & Rui-Ao Ma & Dong Zhu & Konstantinos T. Konstantinidis & Yong-Guan Zhu & Si-Yu Zhang, 2024. "Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Haitao Han & Ziye Wang & Shanfeng Zhu, 2025. "Benchmarking metagenomic binning tools on real datasets across sequencing platforms and binning modes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Yuxuan Du & Fengzhu Sun, 2023. "MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Charles K Fisher & Thierry Mora & Aleksandra M Walczak, 2017. "Variable habitat conditions drive species covariation in the human microbiota," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-18, April.
    20. Nils Giordano & Marinna Gaudin & Camille Trottier & Erwan Delage & Charlotte Nef & Chris Bowler & Samuel Chaffron, 2024. "Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57825-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.