IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57750-5.html
   My bibliography  Save this article

Genomic structural variation in an alpha/beta hydrolase triggers hybrid necrosis in wheat

Author

Listed:
  • Yaoqi Si

    (Chinese Academy of Sciences)

  • Huaizhi Zhang

    (Chinese Academy of Sciences)

  • Shengwei Ma

    (Yazhouwan National Laboratory)

  • Shusong Zheng

    (Chinese Academy of Sciences)

  • Jianqing Niu

    (Yazhouwan National Laboratory
    Hainan Seed Industry Laboratory)

  • Shuiquan Tian

    (Chinese Academy of Sciences)

  • Xuejia Cui

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Keyu Zhu

    (Chinese Academy of Sciences)

  • Xiaocui Yan

    (Hebei Agricultural University)

  • Qiao Lu

    (Chinese Academy of Sciences)

  • Zhimeng Zhang

    (Chinese Academy of Sciences)

  • Tingting Du

    (Chinese Academy of Sciences)

  • Ping Lu

    (Chinese Academy of Sciences)

  • Yongxing Chen

    (Xianghu Laboratory)

  • Qiuhong Wu

    (Xianghu Laboratory)

  • Jingzhong Xie

    (Chinese Academy of Sciences)

  • Guanghao Guo

    (Chinese Academy of Sciences)

  • Mengjun Gu

    (Shandong University)

  • Huilan Wu

    (Chinese Academy of Sciences)

  • Yiwen Li

    (Chinese Academy of Sciences)

  • Chengguo Yuan

    (Hebei Gaoyi Stock Seed Farm)

  • Zaifeng Li

    (Hebei Agricultural University)

  • Zhiyong Liu

    (Chinese Academy of Sciences
    Hainan Seed Industry Laboratory
    University of Chinese Academy of Sciences)

  • Lingli Dong

    (Chinese Academy of Sciences)

  • Hong-Qing Ling

    (Chinese Academy of Sciences
    Yazhouwan National Laboratory
    Hainan Seed Industry Laboratory
    University of Chinese Academy of Sciences)

  • Miaomiao Li

    (Chinese Academy of Sciences)

Abstract

Hybrid necrosis, a century-old mystery in wheat, is caused by complementary genes Ne1 and Ne2. Ne2, encoding a nucleotide-binding leucine-rich repeat (NLR) immune receptor, has been cloned, yet Ne1 remains elusive. Here, we report that Ne1, which encodes an alpha/beta hydrolase (ABH) protein generated by structural variation, triggers hybrid necrosis with Ne2 by activating autoimmune responses. We further verify that not only allelic variation but also copy number variation (CNV) of Ne1 are pivotal for hybrid necrosis diversity in wheat. Ne1 likely originates from wild emmer wheat, potentially through duplication and ectopic recombination events. Unlike Ne2, which is frequently selected for rust resistance in wheat breeding, the lower prevalence of Ne1 in modern wheat cultivars is attributed to its association with hybrid necrosis. Altogether, these findings illuminate the co-evolution of the NLR/ABH gene pair in plant development and innate immunity, offering potential benefits for wheat breeding.

Suggested Citation

  • Yaoqi Si & Huaizhi Zhang & Shengwei Ma & Shusong Zheng & Jianqing Niu & Shuiquan Tian & Xuejia Cui & Keyu Zhu & Xiaocui Yan & Qiao Lu & Zhimeng Zhang & Tingting Du & Ping Lu & Yongxing Chen & Qiuhong , 2025. "Genomic structural variation in an alpha/beta hydrolase triggers hybrid necrosis in wheat," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57750-5
    DOI: 10.1038/s41467-025-57750-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57750-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57750-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Rory N. Pruitt & Federica Locci & Friederike Wanke & Lisha Zhang & Svenja C. Saile & Anna Joe & Darya Karelina & Chenlei Hua & Katja Fröhlich & Wei-Lin Wan & Meijuan Hu & Shaofei Rao & Sara C. Stolze , 2021. "The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity," Nature, Nature, vol. 598(7881), pages 495-499, October.
    3. Adrien Sicard & Christian Kappel & Emily B. Josephs & Young Wha Lee & Cindy Marona & John R. Stinchcombe & Stephen I. Wright & Michael Lenhard, 2015. "Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    4. Rongxin Shen & Lan Wang & Xupeng Liu & Jiang Wu & Weiwei Jin & Xiucai Zhao & Xianrong Xie & Qinlong Zhu & Huiwu Tang & Qing Li & Letian Chen & Yao-Guang Liu, 2017. "Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimin You & Zhigang Zhao & Xiaowen Yu & Shanshan Zhu & Jian Wang & Dekun Lei & Jiawu Zhou & Jing Li & Haiyuan Chen & Yanjia Xiao & Weiwei Chen & Qiming Wang & Jiayu Lu & Keyi Chen & Chunlei Zhou & Xi, 2023. "A toxin-antidote system contributes to interspecific reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yue Zhao & Zhenjie Dong & Jingnan Miao & Qianwen Liu & Chao Ma & Xiubin Tian & Jinqiu He & Huihui Bi & Wen Yao & Tao Li & Harsimardeep S. Gill & Zhibin Zhang & Aizhong Cao & Bao Liu & Huanhuan Li & Su, 2024. "Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Eric Ros-Moner & Tamara Jiménez-Góngora & Luis Villar-Martín & Lana Vogrinec & Víctor M. González-Miguel & Denis Kutnjak & Ignacio Rubio-Somoza, 2024. "Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Daiqi Wang & Hongru Wang & Xiaomei Xu & Man Wang & Yahuan Wang & Hong Chen & Fei Ping & Huanhuan Zhong & Zhengkun Mu & Wantong Xie & Xiangyu Li & Jingbin Feng & Milan Zhang & Zhilan Fan & Tifeng Yang , 2023. "Two complementary genes in a presence-absence variation contribute to indica-japonica reproductive isolation in rice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Li Fan & Katja Fröhlich & Eric Melzer & Rory N. Pruitt & Isabell Albert & Lisha Zhang & Anna Joe & Chenlei Hua & Yanyue Song & Markus Albert & Sang-Tae Kim & Detlef Weigel & Cyril Zipfel & Eunyoung Ch, 2022. "Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Jingfen Huang & Yilin Zhang & Yapeng Li & Meng Xing & Cailin Lei & Shizhuang Wang & Yamin Nie & Yanyan Wang & Mingchao Zhao & Zhenyun Han & Xianjun Sun & Han Zhou & Yan Wang & Xiaoming Zheng & Xiaoron, 2024. "Haplotype-resolved gapless genome and chromosome segment substitution lines facilitate gene identification in wild rice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Ben Liao & You-Huang Xiang & Yan Li & Kai-Yang Yang & Jun-Xiang Shan & Wang-Wei Ye & Nai-Qian Dong & Yi Kan & Yi-Bing Yang & Huai-Yu Zhao & Hong-Xiao Yu & Zi-Qi Lu & Yan Zhao & Qiang Zhao & Dongling G, 2024. "Dysfunction of duplicated pair rice histone acetyltransferases causes segregation distortion and an interspecific reproductive barrier," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Wen R. H. Huang & Ciska Braam & Carola Kretschmer & Sergio Landeo Villanueva & Huan Liu & Filiz Ferik & Aranka M. Burgh & Sjef Boeren & Jinbin Wu & Lisha Zhang & Thorsten Nürnberger & Yulu Wang & Mich, 2024. "Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Yuankun Yang & Christina E. Steidele & Clemens Rössner & Birgit Löffelhardt & Dagmar Kolb & Thomas Leisen & Weiguo Zhang & Christina Ludwig & Georg Felix & Michael F. Seidl & Annette Becker & Thorsten, 2023. "Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zhiyi Chen & Jianhua Huang & Jianyu Li & Frank L. H. Menke & Jonathan D. G. Jones & Hailong Guo, 2025. "Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57750-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.