IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57709-6.html
   My bibliography  Save this article

Hydrothermal activity generated by impact melt emplacement on the rim of Ritchey crater, Mars

Author

Listed:
  • Lingqi Zeng

    (Purdue University)

  • Briony H. N. Horgan

    (Purdue University)

Abstract

Impact-induced hydrothermal systems have the potential to sustain long-lived aqueous environments throughout the history of Mars, yet their nature and distribution are not well-understood. While post-impact hydrothermal alteration on Mars has traditionally been studied at central peaks, we reported similar processes within a well-preserved impactite stratigraphy across the inner rim of Ritchey crater. This stratigraphy comprises a sheet unit overlying fragmented breccia, consistent with the emplacement of impact melt rocks on ballistic ejecta deposits, similar to features observed in complex craters on Earth. Analysis of CRISM hyperspectral data revealed alteration minerals including serpentine, chlorite, Mg-carbonate in fractured bedrock, veins, and erosional windows underneath the sheet unit. These alteration minerals are unrelated to post-impact fluvio-lacustrine facies or pre-impact target bedrock. Instead, their formation is most plausibly attributed to the emplacement of hot impact melt and subsequent groundwater percolation through fractured bedrock at the crater rim. The widespread distribution of the alteration minerals on the inner rim suggests that impact cratering can create extensive habitable environments. Our findings underscore the potential for alteration minerals at crater rims to preserve biosignatures, a key objective of the Mars 2020 mission at Jezero crater.

Suggested Citation

  • Lingqi Zeng & Briony H. N. Horgan, 2025. "Hydrothermal activity generated by impact melt emplacement on the rim of Ritchey crater, Mars," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57709-6
    DOI: 10.1038/s41467-025-57709-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57709-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57709-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. G. Nisbet & N. H. Sleep, 2001. "The habitat and nature of early life," Nature, Nature, vol. 409(6823), pages 1083-1091, February.
    2. Bethany L. Ehlmann & John F. Mustard & Scott L. Murchie & Jean-Pierre Bibring & Alain Meunier & Abigail A. Fraeman & Yves Langevin, 2011. "Subsurface water and clay mineral formation during the early history of Mars," Nature, Nature, vol. 479(7371), pages 53-60, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanner G. Hoog & Matthew R. Pawlak & Nathaniel J. Gaut & Gloria C. Baxter & Thomas A. Bethel & Katarzyna P. Adamala & Aaron E. Engelhart, 2024. "Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for molecular evolution on Mars," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Weishu Zhao & Bozitao Zhong & Lirong Zheng & Pan Tan & Yinzhao Wang & Hao Leng & Nicolas Souza & Zhuo Liu & Liang Hong & Xiang Xiao, 2022. "Proteome-wide 3D structure prediction provides insights into the ancestral metabolism of ancient archaea and bacteria," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Geerat Vermeij, 2009. "Comparative economics: evolution and the modern economy," Journal of Bioeconomics, Springer, vol. 11(2), pages 105-134, August.
    4. Jiacheng Liu & Joseph R. Michalski & Zhicheng Wang & Wen-Sheng Gao, 2024. "Atmospheric oxidation drove climate change on Noachian Mars," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Antonio Molina & Miguel Ángel de Pablo & Ernst Hauber & Laetitia Le Deit & David (Carlos) Fernández-Remolar, 2014. "Geology of the Ariadnes Basin, NE Eridania quadrangle, Mars - 1:1Million," Journal of Maps, Taylor & Francis Journals, vol. 10(3), pages 487-499, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57709-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.