IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57657-1.html
   My bibliography  Save this article

The dynamics of plasmon-induced hot carrier creation in colloidal gold

Author

Listed:
  • Anna Wach

    (Jagiellonian University
    Paul Scherrer Institut
    Polish Academy of Sciences)

  • Robert Bericat-Vadell

    (Uppsala University)

  • Camila Bacellar

    (Paul Scherrer Institut)

  • Claudio Cirelli

    (Paul Scherrer Institut)

  • Philip J. M. Johnson

    (Paul Scherrer Institut)

  • Rebeca G. Castillo

    (Mülheim an der Ruhr)

  • Vitor R. Silveira

    (Uppsala University)

  • Peter Broqvist

    (Uppsala University)

  • Jolla Kullgren

    (Uppsala University)

  • Alexey Maximenko

    (Jagiellonian University)

  • Tomasz Sobol

    (Jagiellonian University)

  • Ewa Partyka-Jankowska

    (Jagiellonian University)

  • Peter Nordlander

    (Rice University
    Rice University)

  • Naomi J. Halas

    (Rice University
    Rice University
    Rice University)

  • Jakub Szlachetko

    (Jagiellonian University)

  • Jacinto Sá

    (Polish Academy of Sciences
    Uppsala University)

Abstract

The generation and dynamics of plasmon-induced hot carriers in gold nanoparticles offer crucial insights into nonequilibrium states for energy applications, yet the underlying mechanisms remain experimentally elusive. Here, we leverage ultrafast X-ray absorption spectroscopy (XAS) to directly capture hot carrier dynamics with sub-50 fs temporal resolution, providing clear evidence of plasmon decay mechanisms. We observe the sequential processes of Landau damping (~25 fs) and hot carrier thermalization (~1.5 ps), identifying hot carrier formation as a significant decay pathway. Energy distribution measurements reveal carriers in non-Fermi-Dirac states persisting beyond 500 fs and observe electron populations exceeding single-photon excitation energy, indicating the role of an Auger heating mechanism alongside traditional impact excitation. These findings deepen the understanding of hot carrier behavior under localized surface plasmon resonance, offering valuable implications for applications in photocatalysis, photovoltaics, and phototherapy. This work establishes a methodological framework for studying hot carrier dynamics, opening avenues for optimizing energy transfer processes in nanoscale plasmonic systems.

Suggested Citation

  • Anna Wach & Robert Bericat-Vadell & Camila Bacellar & Claudio Cirelli & Philip J. M. Johnson & Rebeca G. Castillo & Vitor R. Silveira & Peter Broqvist & Jolla Kullgren & Alexey Maximenko & Tomasz Sobo, 2025. "The dynamics of plasmon-induced hot carrier creation in colloidal gold," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57657-1
    DOI: 10.1038/s41467-025-57657-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57657-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57657-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giulia Tagliabue & Adam S. Jermyn & Ravishankar Sundararaman & Alex J. Welch & Joseph S. DuChene & Ragip Pala & Artur R. Davoyan & Prineha Narang & Harry A. Atwater, 2018. "Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. L. Young & E. P. Kanter & B. Krässig & Y. Li & A. M. March & S. T. Pratt & R. Santra & S. H. Southworth & N. Rohringer & L. F. DiMauro & G. Doumy & C. A. Roedig & N. Berrah & L. Fang & M. Hoener & P. , 2010. "Femtosecond electronic response of atoms to ultra-intense X-rays," Nature, Nature, vol. 466(7302), pages 56-61, July.
    3. Tal Heilpern & Manoj Manjare & Alexander O. Govorov & Gary P. Wiederrecht & Stephen K. Gray & Hayk Harutyunyan, 2018. "Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    4. Sang Han Park & Abhishek Katoch & Keun Hwa Chae & Sanjeev Gautam & Piter Miedema & Sang Wan Cho & Minseok Kim & Ru-Pan Wang & Masoud Lazemi & Frank Groot & Soonnam Kwon, 2022. "Direct and real-time observation of hole transport dynamics in anatase TiO2 using X-ray free-electron laser," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Richard Neutze & Remco Wouts & David van der Spoel & Edgar Weckert & Janos Hajdu, 2000. "Potential for biomolecular imaging with femtosecond X-ray pulses," Nature, Nature, vol. 406(6797), pages 752-757, August.
    6. Matthew E. Sykes & Jon W. Stewart & Gleb M. Akselrod & Xiang-Tian Kong & Zhiming Wang & David J. Gosztola & Alex B. F. Martinson & Daniel Rosenmann & Maiken H. Mikkelsen & Alexander O. Govorov & Gary , 2017. "Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aljoscha Rörig & Sang-Kil Son & Tommaso Mazza & Philipp Schmidt & Thomas M. Baumann & Benjamin Erk & Markus Ilchen & Joakim Laksman & Valerija Music & Shashank Pathak & Daniel E. Rivas & Daniel Rolles, 2023. "Multiple-core-hole resonance spectroscopy with ultraintense X-ray pulses," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jincong Pang & Haodi Wu & Hao Li & Tong Jin & Jiang Tang & Guangda Niu, 2024. "Reconfigurable perovskite X-ray detector for intelligent imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Ananta Dey & Amal Mendalz & Anna Wach & Robert Bericat Vadell & Vitor R. Silveira & Paul Maurice Leidinger & Thomas Huthwelker & Vitalii Shtender & Zbynek Novotny & Luca Artiglia & Jacinto Sá, 2024. "Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Basudev Maity & Mitsuo Shoji & Fangjia Luo & Takanori Nakane & Satoshi Abe & Shigeki Owada & Jungmin Kang & Kensuke Tono & Rie Tanaka & Thuc Toan Pham & Mariko Kojima & Yuki Hishikawa & Junko Tanaka &, 2024. "Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond crystallography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Gábor Bortel & Miklós Tegze & Marcin Sikorski & Richard Bean & Johan Bielecki & Chan Kim & Jayanath C. P. Koliyadu & Faisal H. M. Koua & Marco Ramilli & Adam Round & Tokushi Sato & Dmitrii Zabelskii &, 2024. "3D atomic structure from a single X-ray free electron laser pulse," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Hirokatsu Yumoto & Takahisa Koyama & Akihiro Suzuki & Yasumasa Joti & Yoshiya Niida & Kensuke Tono & Yoshitaka Bessho & Makina Yabashi & Yoshinori Nishino & Haruhiko Ohashi, 2022. "High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Susannah Holmes & Henry J. Kirkwood & Richard Bean & Klaus Giewekemeyer & Andrew V. Martin & Marjan Hadian-Jazi & Max O. Wiedorn & Dominik Oberthür & Hugh Marman & Luigi Adriano & Nasser Al-Qudami & S, 2022. "Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Judit Budai & Zsuzsanna Pápa & Péter Petrik & Péter Dombi, 2022. "Ultrasensitive probing of plasmonic hot electron occupancies," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Stephan Kuschel & Phay J. Ho & Andre Al Haddad & Felix F. Zimmermann & Leonie Flueckiger & Matthew R. Ware & Joseph Duris & James P. MacArthur & Alberto Lutman & Ming-Fu Lin & Xiang Li & Kazutaka Naka, 2025. "Non-linear enhancement of ultrafast X-ray diffraction through transient resonances," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    10. Qi Zhang & Wei Li & Ruixuan Zhao & Peizhe Tang & Jie Zhao & Guorong Wu & Xin Chen & Mingjun Hu & Kaijun Yuan & Jiebo Li & Xueming Yang, 2024. "Real-time observation of two distinctive non-thermalized hot electron dynamics at MXene/molecule interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Jiaqi Zhou & Xitao Yu & Sizuo Luo & Xiaorui Xue & Shaokui Jia & Xinyu Zhang & Yongtao Zhao & Xintai Hao & Lanhai He & Chuncheng Wang & Dajun Ding & Xueguang Ren, 2022. "Triple ionization and fragmentation of benzene trimers following ultrafast intermolecular Coulombic decay," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Maximilian Wranik & Michal W. Kepa & Emma V. Beale & Daniel James & Quentin Bertrand & Tobias Weinert & Antonia Furrer & Hannah Glover & Dardan Gashi & Melissa Carrillo & Yasushi Kondo & Robin T. Stip, 2023. "A multi-reservoir extruder for time-resolved serial protein crystallography and compound screening at X-ray free-electron lasers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Mario Reiser & Anita Girelli & Anastasia Ragulskaya & Sudipta Das & Sharon Berkowicz & Maddalena Bin & Marjorie Ladd-Parada & Mariia Filianina & Hanna-Friederike Poggemann & Nafisa Begam & Mohammad Sa, 2022. "Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Robert Lemasters & Manoj Manjare & Ryan Freeman & Feng Wang & Luka Guy Pierce & Gordon Hua & Sergei Urazhdin & Hayk Harutyunyan, 2024. "Non-thermal emission in gap-mode plasmon photoluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Can O. Karaman & Anton Yu. Bykov & Fatemeh Kiani & Giulia Tagliabue & Anatoly V. Zayats, 2024. "Ultrafast hot-carrier dynamics in ultrathin monocrystalline gold," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Robert Bosman & Giorgia Ortolani & Swagatha Ghosh & Daniel James & Per Norder & Greger Hammarin & Tinna Björg Úlfarsdóttir & Lucija Ostojić & Tobias Weinert & Florian Dworkowski & Takashi Tomizaki & J, 2025. "Structural basis for the prolonged photocycle of sensory rhodopsin II revealed by serial synchrotron crystallography," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57657-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.