IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57499-x.html
   My bibliography  Save this article

Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface

Author

Listed:
  • Zichuan Ding

    (Sichuan University
    Sichuan University)

  • Yongrui Cai

    (Sichuan University)

  • Haocheng Sun

    (Sichuan University)

  • Xiao Rong

    (Sichuan University)

  • Sipei Ye

    (University of Science and Technology of China)

  • Jiaxuan Fan

    (Sichuan University)

  • Yahao Lai

    (Sichuan University)

  • Zhimin Liang

    (Sichuan University)

  • Chao Huang

    (Sichuan University)

  • Peilin Li

    (Sichuan University)

  • Xiaoxue Fu

    (Sichuan University)

  • Liu Wang

    (University of Science and Technology of China)

  • Guosheng Tang

    (Guangzhou Medical University)

  • Zongke Zhou

    (Sichuan University)

  • Zeyu Luo

    (Sichuan University)

Abstract

Regenerating natural gradients of the tendon‒bone interface (TBI) is a major challenge in the reconstruction of rotator cuff tear (RCT). In this study, magnetic Janus hydrogel microrobots to match the TBI orientation during RCT reconstruction surgery are developed via a biofriendly gas-shearing microfluidic platform. Through separate loading of Mg2+ and Zn2+, the microrobots facilitate the immediate restoration and long-term maintenance of the natural mineral gradient in the TBI after implantation and alignment through magnetic manipulation. In vitro studies confirm the spatiotemporal cell phenotype modulation effects of the microrobots. In a rat RCT model, microrobots synchronously promote the bone and tendon regeneration, and the restoration of gradient tendon‒bone transition structures in the TBI. Overall, by rebuilding the Mg2+/Zn2+ mineral gradient, cell phenotype gradient and structural gradient of the TBI, magnetic Janus microrobots loaded with dual bioactive ions represent a promising strategy for promoting TBI healing in RCT reconstruction surgery.

Suggested Citation

  • Zichuan Ding & Yongrui Cai & Haocheng Sun & Xiao Rong & Sipei Ye & Jiaxuan Fan & Yahao Lai & Zhimin Liang & Chao Huang & Peilin Li & Xiaoxue Fu & Liu Wang & Guosheng Tang & Zongke Zhou & Zeyu Luo, 2025. "Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57499-x
    DOI: 10.1038/s41467-025-57499-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57499-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57499-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yu Wang & Shanshan Jin & Dan Luo & Danqing He & Chunyan Shi & Lisha Zhu & Bo Guan & Zixin Li & Ting Zhang & Yanheng Zhou & Cun-Yu Wang & Yan Liu, 2021. "Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    3. Tao Wang & Jiaxiang Bai & Min Lu & Chenglong Huang & Dechun Geng & Gang Chen & Lei Wang & Jin Qi & Wenguo Cui & Lianfu Deng, 2022. "Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Neal L. Millar & Derek S. Gilchrist & Moeed Akbar & James H. Reilly & Shauna C. Kerr & Abigail L. Campbell & George A. C. Murrell & Foo Y. Liew & Mariola Kurowska-Stolarska & Iain B. McInnes, 2015. "MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhinan Mao & Xuewei Bi & Chunhao Yu & Lei Chen & Jie Shen & Yongcan Huang & Zihong Wu & Hui Qi & Juan Guan & Xiong Shu & Binsheng Yu & Yufeng Zheng, 2024. "Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Wei Zhou & Yang Liu & Xuan Nie & Chen Zhu & Liming Xiong & Jing Zhou & Wei Huang, 2025. "Peptide-based inflammation-responsive implant coating sequentially regulates bone regeneration to enhance interfacial osseointegration," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    3. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    5. Chowon Kim & Nayeon Kang & Sunhong Min & Ramar Thangam & Sungkyu Lee & Hyunsik Hong & Kanghyeon Kim & Seong Yeol Kim & Dahee Kim & Hyunji Rha & Kyong-Ryol Tag & Hyun-Jeong Lee & Nem Singh & Daun Jeong, 2024. "Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Woojin Choi & Utkarsh Mangal & Jin-Young Park & Ji-Yeong Kim & Taesuk Jun & Ju Won Jung & Moonhyun Choi & Sungwon Jung & Milae Lee & Ji-Yeong Na & Du Yeol Ryu & Jin Man Kim & Jae-Sung Kwon & Won-Gun K, 2023. "Occlusive membranes for guided regeneration of inflamed tissue defects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Huashuo Ma & Chaozheng Liu & Zhi Yang & Shuai Wu & Yue Jiao & Xinhao Feng & Bo Xu & Rongxian Ou & Changtong Mei & Zhaoyang Xu & Jianxiong Lyu & Yanjun Xie & Qiliang Fu, 2024. "Programmable and flexible wood-based origami electronics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Shuang Li & Hongtao Yang & Xinhua Qu & Yu Qin & Aobo Liu & Guo Bao & He Huang & Chaoyang Sun & Jiabao Dai & Junlong Tan & Jiahui Shi & Yan Guan & Wei Pan & Xuenan Gu & Bo Jia & Peng Wen & Xiaogang Wan, 2024. "Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Liyang Mao & Peng Yang & Chenyao Tian & Xingjian Shen & Feihao Wang & Hao Zhang & Xianghe Meng & Hui Xie, 2024. "Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Liwei Wang & Yilong Chang & Shuai Wu & Ruike Renee Zhao & Wei Chen, 2023. "Physics-aware differentiable design of magnetically actuated kirigami for shape morphing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57499-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.