IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57397-2.html
   My bibliography  Save this article

Modularity of Zorya defense systems during phage inhibition

Author

Listed:
  • Giuseppina Mariano

    (University of Glasgow
    University of Glasgow)

  • Justin C. Deme

    (NIH)

  • Jennifer J. Readshaw

    (Durham University)

  • Matthew J. Grobbelaar

    (Durham University)

  • Mackenzie Keenan

    (University of Glasgow)

  • Yasmin El-Masri

    (University of Glasgow)

  • Lindsay Bamford

    (University of Glasgow)

  • Suraj Songra

    (University of Glasgow)

  • Tim R. Blower

    (Durham University)

  • Tracy Palmer

    (Newcastle University)

  • Susan M. Lea

    (NIH)

Abstract

Bacteria have evolved an extraordinary diversity of defense systems against bacteriophage (phage) predation. However, the molecular mechanisms underlying these anti-phage systems often remain elusive. Here, we provide mechanistic and structural insights into Zorya phage defense systems. Using cryo-EM structural analyses, we show that the Zorya type I and II core components, ZorA and ZorB, assemble in a 5:2 complex that is similar to inner-membrane ion-driven, rotary motors that power flagellar rotation, type 9 secretion, gliding and the Ton nutrient uptake systems. The ZorAB complex has an elongated cytoplasmic tail assembled by bundling the C-termini of the five ZorA subunits. Mutagenesis demonstrates that peptidoglycan binding by the periplasmic domains of ZorB, the structured cytoplasmic tail of ZorA, and ion flow through the motor is important for function in both type I and II systems. Furthermore, we identify ZorE as the effector module of the Zorya II system, possessing nickase activity. Our work reveals the molecular basis of the activity of Zorya systems and highlights the ZorE nickase as crucial for population-wide immunity in the type II system.

Suggested Citation

  • Giuseppina Mariano & Justin C. Deme & Jennifer J. Readshaw & Matthew J. Grobbelaar & Mackenzie Keenan & Yasmin El-Masri & Lindsay Bamford & Suraj Songra & Tim R. Blower & Tracy Palmer & Susan M. Lea, 2025. "Modularity of Zorya defense systems during phage inhibition," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57397-2
    DOI: 10.1038/s41467-025-57397-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57397-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57397-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Erez Yirmiya & Azita Leavitt & Allen Lu & Adelyn E. Ragucci & Carmel Avraham & Ilya Osterman & Jeremy Garb & Sadie P. Antine & Sarah E. Mooney & Samuel J. Hobbs & Philip J. Kranzusch & Gil Amitai & Ro, 2024. "Phages overcome bacterial immunity via diverse anti-defence proteins," Nature, Nature, vol. 625(7994), pages 352-359, January.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    4. Donghyun Ka & Hyejin Oh & Eunyoung Park & Jeong-Han Kim & Euiyoung Bae, 2020. "Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiwen Wang & Qi Xu & Zhuoxi Wu & Jialu Li & Hao Guo & Tianzhui Liao & Yuan Shi & Ling Yuan & Haishan Gao & Rong Yang & Zhubing Shi & Faxiang Li, 2024. "The structural basis of the activation and inhibition of DSR2 NADase by phage proteins," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xinmi Song & Sheng Lei & Shunhang Liu & Yanqiu Liu & Pan Fu & Zhifeng Zeng & Ke Yang & Yu Chen & Ming Li & Qunxin She & Wenyuan Han, 2023. "Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yiqun Wang & Yuqing Tian & Xu Yang & Feng Yu & Jianting Zheng, 2025. "Filamentation activates bacterial Avs5 antiviral protein," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Jiafeng Huang & Keli Zhu & Yina Gao & Feng Ye & Zhaolong Li & Yao Ge & Songqing Liu & Jing Yang & Ang Gao, 2024. "Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jun-Tao Zhang & Xiao-Yu Liu & Zhuolin Li & Xin-Yang Wei & Xin-Yi Song & Ning Cui & Jirui Zhong & Hongchun Li & Ning Jia, 2024. "Structural basis for phage-mediated activation and repression of bacterial DSR2 anti-phage defense system," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Xiangkai Zhen & Biao Zhou & Zihe Liu & Xurong Wang & Heyu Zhao & Shuxian Wu & Zekai Li & Jiamin liang & Wanyue Zhang & Qingjian Zhu & Jun He & Xiaoli Xiong & Songying Ouyang, 2024. "Mechanistic basis for the allosteric activation of NADase activity in the Sir2-HerA antiphage defense system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Hang Yin & Xuzichao Li & Xiaoshen Wang & Chendi Zhang & Jiaqi Gao & Guimei Yu & Qiuqiu He & Jie Yang & Xiang Liu & Yong Wei & Zhuang Li & Heng Zhang, 2024. "Insights into the modulation of bacterial NADase activity by phage proteins," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    13. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57397-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.