IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57257-z.html
   My bibliography  Save this article

PARP inhibitor radiosensitization enhances anti-PD-L1 immunotherapy through stabilizing chemokine mRNA in small cell lung cancer

Author

Listed:
  • Xiaozhuo Ran

    (University Health Network)

  • Bell Xi Wu

    (University Health Network
    University of Toronto)

  • Venkatasubramanian Vidhyasagar

    (University Health Network)

  • Lifang Song

    (University Health Network)

  • Xu Zhang

    (McGill University
    McGill University)

  • Reese Jalal Ladak

    (McGill University
    McGill University)

  • Mona Teng

    (University Health Network
    University of Toronto)

  • Wail Ba-alawi

    (University Health Network)

  • Vivek Philip

    (University Health Network)

  • Housheng H. He

    (University Health Network
    University of Toronto)

  • Nahum Sonenberg

    (McGill University
    McGill University)

  • Benjamin H. Lok

    (University Health Network
    University of Toronto
    University of Toronto
    University of Toronto)

Abstract

Immunotherapy (IO) is an effective treatment for various cancers; however, the benefits are modest for small cell lung cancer (SCLC). The poor response of SCLC to anti-PD-1/PD-L1 IO is due in part to the lack of cytotoxic T cells because of limited chemokine expression from SCLC tumors. Immunogenic radiosensitizers that enhance chemokine expression may be a promising strategy forward. Here, we show that the PARP inhibitors (PARPi), including olaparib, talazoparib and veliparib, in combination with radiotherapy (RT) enhance the immune activation and anti-tumor efficacy in SCLC cell lines, patient-derived xenograft (PDX) and syngeneic mouse models. The effect is further enhanced by continued delivery of adjuvant PARPi. The combination treatment (PARPi with RT) activates the cGAS-STING pathway and increases the mRNA levels of the T cell chemo-attractants CCL5 and CXCL10. In addition to upregulation of transcription, the combination treatment increases chemokine CXCL10 protein levels via stabilization of CXCL10 mRNA in an EIF4E2-dependent manner. The incorporation of anti-PD-L1 IO into the PARPi with RT combination therapy further improves the anti-tumor efficacy by increasing T cell infiltration and function. This study thus provides a proof of principle for the combination of PARP inhibitors, RT and anti-PD-L1 IO as a treatment strategy for SCLC.

Suggested Citation

  • Xiaozhuo Ran & Bell Xi Wu & Venkatasubramanian Vidhyasagar & Lifang Song & Xu Zhang & Reese Jalal Ladak & Mona Teng & Wail Ba-alawi & Vivek Philip & Housheng H. He & Nahum Sonenberg & Benjamin H. Lok, 2025. "PARP inhibitor radiosensitization enhances anti-PD-L1 immunotherapy through stabilizing chemokine mRNA in small cell lung cancer," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57257-z
    DOI: 10.1038/s41467-025-57257-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57257-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57257-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claire Vanpouille-Box & Amandine Alard & Molykutty J. Aryankalayil & Yasmeen Sarfraz & Julie M. Diamond & Robert J. Schneider & Giorgio Inghirami & C. Norman Coleman & Silvia C. Formenti & Sandra Dema, 2017. "DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
    2. Shane M. Harding & Joseph L. Benci & Jerome Irianto & Dennis E. Discher & Andy J. Minn & Roger A. Greenberg, 2017. "Mitotic progression following DNA damage enables pattern recognition within micronuclei," Nature, Nature, vol. 548(7668), pages 466-470, August.
    3. Karen J. Mackenzie & Paula Carroll & Carol-Anne Martin & Olga Murina & Adeline Fluteau & Daniel J. Simpson & Nelly Olova & Hannah Sutcliffe & Jacqueline K. Rainger & Andrea Leitch & Ruby T. Osborn & A, 2017. "cGAS surveillance of micronuclei links genome instability to innate immunity," Nature, Nature, vol. 548(7668), pages 461-465, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kate M. MacDonald & Shirony Nicholson-Puthenveedu & Maha M. Tageldein & Sarika Khasnis & Cheryl H. Arrowsmith & Shane M. Harding, 2023. "Antecedent chromatin organization determines cGAS recruitment to ruptured micronuclei," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Shengrui Feng & Sajid A. Marhon & Dustin J. Sokolowski & Alister D’Costa & Fraser Soares & Parinaz Mehdipour & Charles Ishak & Helen Loo Yau & Ilias Ettayebi & Parasvi S. Patel & Raymond Chen & Jiming, 2024. "Inhibiting EZH2 targets atypical teratoid rhabdoid tumor by triggering viral mimicry via both RNA and DNA sensing pathways," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    4. Rana Falahat & Anders Berglund & Patricio Perez-Villarroel & Ryan M. Putney & Imene Hamaidi & Sungjune Kim & Shari Pilon-Thomas & Glen N. Barber & James J. Mulé, 2023. "Epigenetic state determines the in vivo efficacy of STING agonist therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Hervé Técher & Diyavarshini Gopaul & Jonathan Heuzé & Nail Bouzalmad & Baptiste Leray & Audrey Vernet & Clément Mettling & Jérôme Moreaux & Philippe Pasero & Yea-Lih Lin, 2024. "MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Francesca Mateo & Zhengcheng He & Lin Mei & Gorka Ruiz de Garibay & Carmen Herranz & Nadia García & Amanda Lorentzian & Alexandra Baiges & Eline Blommaert & Antonio Gómez & Oriol Mirallas & Anna Garri, 2022. "Modification of BRCA1-associated breast cancer risk by HMMR overexpression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Yu-Hsuan Chen & Han-Hsiun Chen & Won-Jing Wang & Hsin-Yi Chen & Wei-Syun Huang & Chien-Han Kao & Sin-Rong Lee & Nai Yang Yeat & Ruei-Liang Yan & Shu-Jou Chan & Kuen-Phon Wu & Ruey-Hwa Chen, 2023. "TRABID inhibition activates cGAS/STING-mediated anti-tumor immunity through mitosis and autophagy dysregulation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Qing Hu & Jose Espejo Valle-Inclán & Rashmi Dahiya & Alison Guyer & Alice Mazzagatti & Elizabeth G. Maurais & Justin L. Engel & Huiming Lu & Anthony J. Davis & Isidro Cortés-Ciriano & Peter Ly, 2024. "Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Dario Zimmerli & Chiara S. Brambillasca & Francien Talens & Jinhyuk Bhin & Renske Linstra & Lou Romanens & Arkajyoti Bhattacharya & Stacey E. P. Joosten & Ana Moises Silva & Nuno Padrao & Max D. Welle, 2022. "MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Christopher P. Wardlaw & John H. J. Petrini, 2022. "ISG15 conjugation to proteins on nascent DNA mitigates DNA replication stress," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Samuel D. Chauvin & Shoichiro Ando & Joe A. Holley & Atsushi Sugie & Fang R. Zhao & Subhajit Poddar & Rei Kato & Cathrine A. Miner & Yohei Nitta & Siddharth R. Krishnamurthy & Rie Saito & Yue Ning & Y, 2024. "Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in Drosophila, mice, and humans," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    14. Ying Zhang & Raghava N. Sriramaneni & Paul A. Clark & Justin C. Jagodinsky & Mingzhou Ye & Wonjong Jin & Yuyuan Wang & Amber Bates & Caroline P. Kerr & Trang Le & Raad Allawi & Xiuxiu Wang & Ruosen Xi, 2022. "Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Nasser K. Altorki & Zachary H. Walsh & Johannes C. Melms & Jeffery L. Port & Benjamin E. Lee & Abu Nasar & Cathy Spinelli & Lindsay Caprio & Meri Rogava & Patricia Ho & Paul J. Christos & Ashish Saxen, 2023. "Neoadjuvant durvalumab plus radiation versus durvalumab alone in stages I–III non-small cell lung cancer: survival outcomes and molecular correlates of a randomized phase II trial," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Maritza Puray-Chavez & Jenna E. Eschbach & Ming Xia & Kyle M. LaPak & Qianzi Zhou & Ria Jasuja & Jiehong Pan & Jian Xu & Zixiang Zhou & Shawn Mohammed & Qibo Wang & Dana Q. Lawson & Sanja Djokic & Gao, 2024. "A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    18. Xiujie Liang & Hongbo Liu & Hailong Hu & Eunji Ha & Jianfu Zhou & Amin Abedini & Andrea Sanchez-Navarro & Konstantin A. Klötzer & Katalin Susztak, 2024. "TET2 germline variants promote kidney disease by impairing DNA repair and activating cytosolic nucleotide sensors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Jeffrey Patterson-Fortin & Heta Jadhav & Constantia Pantelidou & Tin Phan & Carter Grochala & Anita K. Mehta & Jennifer L. Guerriero & Gerburg M. Wulf & Brian M. Wolpin & Ben Z. Stanger & Andrew J. Ag, 2023. "RETRACTED ARTICLE: Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Yaping Huang & Changzheng Lu & Hanzhi Wang & Liya Gu & Yang-Xin Fu & Guo-Min Li, 2023. "DNAJA2 deficiency activates cGAS-STING pathway via the induction of aberrant mitosis and chromosome instability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57257-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.